Rational parametrizations in differential algebra

Sebastian Falkensteiner

previously: Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany; Research Institute for Symbolic Computation Hagenberg, Austria

June 12th, 2024

RISC

Overview

(1) Algebraic Geometry

- Rational parametrizations
- Rational curves
(2) Differential algebra
- Implicitization
- Algebro-geometric approach
- Realizations
- Results on realizations
(3) Systems involving parameters
- SEIR model
- Identifiable functions
- Reparametrization
- Tsen's theorem
- Witness variety

Motivation

The solutions $y(t)$ of the ODE-system

$$
\Sigma=\left\{\begin{array}{l}
x_{1}^{\prime}(t)=x_{2}(t)^{2} \\
x_{2}^{\prime}(t)=x_{1}(t) u(t) \\
y(t)=x_{2}(t)
\end{array}\right.
$$

and that of $F=u(t) y^{\prime \prime}(t)-u(t)^{2} y(t)^{2}-u^{\prime}(t) y^{\prime}(t)=0$ are the same.

Motivation

The solutions $y(t)$ of the ODE-system

$$
\Sigma=\left\{\begin{array}{l}
x_{1}^{\prime}(t)=x_{2}(t)^{2} \\
x_{2}^{\prime}(t)=x_{1}(t) u(t) \\
y(t)=x_{2}(t)
\end{array}\right.
$$

and that of $F=u(t) y^{\prime \prime}(t)-u(t)^{2} y(t)^{2}-u^{\prime}(t) y^{\prime}(t)=0$ are the same.

Question

(1) How to transform Σ into F and conversely, F into Σ ?
(2) Is this always possible? Under which assumptions for Σ (polynomiality, real coefficients etc.)?

Rational parametrizations $\mathcal{S} \rightarrow P$

Let $\mathcal{S} \subset K\left[y_{0}, \ldots, y_{n}\right]$ be a finite set of polynomials (over a field K with characteristic zero). We call

$$
\mathbb{V}(\mathcal{S}):=\left\{P \in \bar{K}^{n+1} \mid \forall F \in \mathcal{S}: F(P)=0\right\}
$$

the corresponding algebraic set.

Rational parametrizations $\mathcal{S} \rightarrow P$

Let $\mathcal{S} \subset K\left[y_{0}, \ldots, y_{n}\right]$ be a finite set of polynomials (over a field K with characteristic zero). We call

$$
\mathbb{V}(\mathcal{S}):=\left\{P \in \bar{K}^{n+1} \mid \forall F \in \mathcal{S}: F(P)=0\right\}
$$

the corresponding algebraic set. A tuple $P \in \bar{K}\left(x_{1}, \ldots, x_{m}\right)^{n+1} \backslash \bar{K}^{n+1}$ with $F(P)=0$ for every $F \in \mathcal{S}$ is called a (rational) parametrization of $\mathbb{V}(F)$ iff the Jacobian $\mathcal{J}(P)$ of P w.r.t. $\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)$ has maximal rank.

Rational parametrizations $\mathcal{S} \rightarrow P$

Let $\mathcal{S} \subset K\left[y_{0}, \ldots, y_{n}\right]$ be a finite set of polynomials (over a field K with characteristic zero). We call

$$
\mathbb{V}(\mathcal{S}):=\left\{P \in \bar{K}^{n+1} \mid \forall F \in \mathcal{S}: F(P)=0\right\}
$$

the corresponding algebraic set. A tuple $P \in \bar{K}\left(x_{1}, \ldots, x_{m}\right)^{n+1} \backslash \bar{K}^{n+1}$ with $F(P)=0$ for every $F \in \mathcal{S}$ is called a (rational) parametrization of $\mathbb{V}(F)$ iff the Jacobian $\mathcal{J}(P)$ of P w.r.t. $\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)$ has maximal rank.
(1) $P=\left(x^{3}, x^{2}\right)$ is a parametrization of the cusp $\mathbb{V}\left(y_{0}^{2}-y_{1}^{3}\right)$.

Rational parametrizations $\mathcal{S} \rightarrow P$

Let $\mathcal{S} \subset K\left[y_{0}, \ldots, y_{n}\right]$ be a finite set of polynomials (over a field K with characteristic zero). We call

$$
\mathbb{V}(\mathcal{S}):=\left\{P \in \bar{K}^{n+1} \mid \forall F \in \mathcal{S}: F(P)=0\right\}
$$

the corresponding algebraic set. A tuple $P \in \bar{K}\left(x_{1}, \ldots, x_{m}\right)^{n+1} \backslash \bar{K}^{n+1}$ with $F(P)=0$ for every $F \in \mathcal{S}$ is called a (rational) parametrization of $\mathbb{V}(F)$ iff the Jacobian $\mathcal{J}(P)$ of P w.r.t. $\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)$ has maximal rank.
(1) $P=\left(x^{3}, x^{2}\right)$ is a parametrization of the cusp $\mathbb{V}\left(y_{0}^{2}-y_{1}^{3}\right)$.
(2) The unit sphere $\mathbb{V}\left(y_{0}^{2}+y_{1}^{2}+y_{2}^{2}-1\right)$ has the parametrization

$$
P=\left(\frac{2 x_{1}}{x_{1}^{2}+x_{2}^{2}+1}, \frac{2 x_{2}}{x_{1}^{2}+x_{2}^{2}+1}, \frac{x_{1}^{2}+x_{2}^{2}-1}{x_{1}^{2}+x_{2}^{2}+1}\right) .
$$

Rational curves

Characterization theorem

Let $F \in K\left[y_{0}, y_{1}\right] . \mathbb{V}(F)$ admits a rational parametrization iff the genus of $\mathbb{V}(F)$ is zero.

Rational curves

Characterization theorem

Let $F \in K\left[y_{0}, y_{1}\right] . \mathbb{V}(F)$ admits a rational parametrization iff the genus of $\mathbb{V}(F)$ is zero.

Important facts

(1) The existence of a rational parametrization of an algebraic curve or surface can algorithmically be decided and, in the affirmative case, the parametrization can be computed.

Rational curves

Characterization theorem

Let $F \in K\left[y_{0}, y_{1}\right]$. $\mathbb{V}(F)$ admits a rational parametrization iff the genus of $\mathbb{V}(F)$ is zero.

Important facts

(1) The existence of a rational parametrization of an algebraic curve or surface can algorithmically be decided and, in the affirmative case, the parametrization can be computed.
(2) Rational parametrizations of curves and surfaces can always be chosen birationally. As a consequence, all such rational parametrizations P, Q can be related by reparametrizations $P(x)=Q(s(x))$ with $s \in \bar{K}\left(x_{1}, \ldots, x_{m}\right)^{m}$ and invertible $\mathcal{J}(s), m \in\{1,2\}$.

Rational curves

Characterization theorem

Let $F \in K\left[y_{0}, y_{1}\right] . \mathbb{V}(F)$ admits a rational parametrization iff the genus of $\mathbb{V}(F)$ is zero.

Important facts

(1) The existence of a rational parametrization of an algebraic curve or surface can algorithmically be decided and, in the affirmative case, the parametrization can be computed.
(2) Rational parametrizations of curves and surfaces can always be chosen birationally. As a consequence, all such rational parametrizations P, Q can be related by reparametrizations $P(x)=Q(s(x))$ with $s \in \bar{K}\left(x_{1}, \ldots, x_{m}\right)^{m}$ and invertible $\mathcal{J}(s), m \in\{1,2\}$.
(3) Rational parametrizations of curves $P \in L(x)^{2}$ can be found over optimal fields, i.e., with coefficients in a minimal field extension $K \subseteq L \subset \bar{K} . \ln$ fact, $[L: K] \leq 2$.

Example 1

Let $F=y_{0}^{2}+2 y_{1}^{2}-1$. Then $\mathbb{V}(F)$ admits the birational parametrization

$$
P=\left(\frac{1-x^{2}}{1+x^{2}}, \frac{\sqrt{2} x}{1+x^{2}}\right)
$$

over the optimal field of parametrization $\mathbb{Q}(\sqrt{2})$.

Implicitization $\mathcal{S} \leftarrow P$

Given $P=\left(\frac{p_{0}}{q}, \ldots, \frac{p_{n}}{q}\right) \in \bar{K}\left(x_{1}, \ldots, x_{m}\right)^{n+1}$, we can always find a system of algebraic polynomials \mathcal{S} such that P is a rational parametrizations of $\mathbb{V}(\mathcal{S})$:

Implicitization $\mathcal{S} \leftarrow P$

Given $P=\left(\frac{p_{0}}{q}, \ldots, \frac{p_{n}}{q}\right) \in \bar{K}\left(x_{1}, \ldots, x_{m}\right)^{n+1}$, we can always find a system of algebraic polynomials \mathcal{S} such that P is a rational parametrizations of $\mathbb{V}(\mathcal{S})$: By using Groebner bases, one can compute the intersection ideal

$$
\left\langle y_{0} q-p_{0}, \ldots, y_{n} q-p_{n}, q z-1\right\rangle \cap \bar{K}\left[y_{0}, \ldots, y_{n}\right]
$$

and the finite number of generators can be chosen as \mathcal{S}.

Example 1

From $P=\left(\frac{1-x^{2}}{1+x^{2}}, \frac{\sqrt{2} x}{1+x^{2}}\right)$ we get the ideal generated by

$$
\left(1+x^{2}\right) y_{0}-\left(1-x^{2}\right),\left(1+x^{2}\right) y_{1}-\sqrt{2} x,\left(1+x^{2}\right) z-1
$$

Example 1

From $P=\left(\frac{1-x^{2}}{1+x^{2}}, \frac{\sqrt{2} x}{1+x^{2}}\right)$ we get the ideal generated by

$$
\left(1+x^{2}\right) y_{0}-\left(1-x^{2}\right),\left(1+x^{2}\right) y_{1}-\sqrt{2} x,\left(1+x^{2}\right) z-1
$$

Its Groebner basis (w.r.t. $z>x>y_{0}>y_{1}$) is

$$
\mathcal{G}=\left\{y_{0}^{2}+2 y_{1}^{2}-1,-\sqrt{2} x y_{1}-y_{0}+1,-x y_{0}-x+\sqrt{2} y_{1}, y_{0}-2 z+1\right\}
$$

such that $F=y_{0}^{2}+2 y_{1}^{2}-1$ is the only element in $\mathcal{G} \cap \overline{\mathbb{Q}}\left[y_{0}, y_{1}\right]$.

Main questions

Do we have counterparts of the previous concepts in differential algebra?
(1) Parametrizations / Implicitization
(2) Birationality
(3) Optimal coefficient fields and computation with parameters
(9) Is it algorithmic?

Differential algebra

Let us consider ODE models of the form

$$
\Sigma=\left\{\begin{array}{l}
\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{u}, \mathbf{x}) \tag{1}\\
\mathbf{y}=\mathbf{g}(\mathbf{u}, \mathbf{x})
\end{array}\right.
$$

with the components of \mathbf{f}, \mathbf{g} in $\bar{K}(\mathbf{u}, \mathbf{x})$.

Differential algebra

Let us consider ODE models of the form

$$
\Sigma=\left\{\begin{array}{l}
\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{u}, \mathbf{x}) \tag{1}\\
\mathbf{y}=\mathbf{g}(\mathbf{u}, \mathbf{x})
\end{array}\right.
$$

with the components of \mathbf{f}, \mathbf{g} in $\bar{K}(\mathbf{u}, \mathbf{x})$. We define the (prime) differential ideal of Σ as

$$
I_{\Sigma}=\left[q \mathbf{x}^{\prime}-q \mathbf{f}, q \mathbf{y}-q \mathbf{g}\right]: q^{\infty} \subset \bar{K}\left[\mathbf{x}^{(\infty)}, \mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}\right]
$$

where q is the common denominator of \mathbf{f} and \mathbf{g}, and

$$
I: a^{\infty}=\left\{r \in R \mid \exists \ell: a^{\ell} r \in I\right\} .
$$

Implicitization $\mathcal{S} \leftarrow \Sigma$

I_{Σ} can be represented in a finite way by using for instance the Thomas decomposition or regular differential chains.

Implicitization $\mathcal{S} \leftarrow \Sigma$

I_{Σ} can be represented in a finite way by using for instance the Thomas decomposition or regular differential chains.

Important facts

(1) The result is a finite number of (reduced) triangular sets with one essential component \mathcal{G}.
(2) The general solution of \mathcal{G} and that of I_{Σ} coincides.
(3) Using the ordering $y_{i}^{\prime}, u_{i}^{\prime}<x_{i}^{\prime}$, the intersection ideal $I_{\Sigma} \cap \bar{K}\left[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}\right]$ is generated by $\mathcal{G} \cap \bar{K}\left[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}\right]$.

Implicitization $\mathcal{S} \leftarrow \Sigma$

I_{Σ} can be represented in a finite way by using for instance the Thomas decomposition or regular differential chains.

Important facts

(1) The result is a finite number of (reduced) triangular sets with one essential component \mathcal{G}.
(2) The general solution of \mathcal{G} and that of I_{Σ} coincides.
(3) Using the ordering $y_{i}^{\prime}, u_{i}^{\prime}<x_{i}^{\prime}$, the intersection ideal $I_{\Sigma} \cap \bar{K}\left[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}\right]$ is generated by $\mathcal{G} \cap \bar{K}\left[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}\right]$.

Implicitization

$\mathcal{S}=\mathcal{G} \cap \bar{K}\left[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}\right]$ are called the IO-equations corresponding to Σ.

Example 2

Consider

$$
\Sigma=\left\{\begin{array}{l}
x^{\prime}=-\frac{x^{2}-1}{3 x^{2}}, \\
y=x^{3} .
\end{array}\right.
$$

Example 2

Consider

$$
\Sigma=\left\{\begin{array}{l}
x^{\prime}=-\frac{x^{2}-1}{3 x^{2}} \\
y=x^{3}
\end{array}\right.
$$

Then $y^{\prime}=-3 x^{2} \cdot \frac{x^{2}-1}{3 x^{2}}=-x^{2}+1$ and

$$
\operatorname{Res}_{x}\left(y-x^{3}, y^{\prime}+x^{2}-1\right)=y^{\prime 3}+y^{2}-3 y^{\prime 2}+3 y^{\prime}-1
$$

is the IO-equation of Σ.

Realization problem

Given $\mathcal{S} \subset K\left[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}\right]$, one can ask the question whether there is a system Σ as in (1) such that \mathcal{S} are the IO-equations of Σ. In the affirmative case, Σ is called a realization of \mathcal{S}.

Realization problem

Given $\mathcal{S} \subset K\left[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}\right]$, one can ask the question whether there is a system Σ as in (1) such that \mathcal{S} are the IO-equations of Σ. In the affirmative case, Σ is called a realization of \mathcal{S}.
Finding a realization is similar to the problem of finding a rational parametrizations of a given set algebraic set.

Algebro-geometric approach

Given $\mathcal{S} \subset K\left[y^{(\infty)}, u^{(\infty)}\right]$, we now forget about the differential relations and consider $y^{(i)}(t)=: y_{i}$ as independent variables.

Algebro-geometric approach

Given $\mathcal{S} \subset K\left[y^{(\infty)}, u^{(\infty)}\right]$, we now forget about the differential relations and consider $y^{(i)}(t)=: y_{i}$ as independent variables.

Parametrization

If \mathcal{S} has a realization $\Sigma=\left\{\begin{array}{l}\mathbf{x}^{\prime}=\mathbf{f}(u, \mathbf{x}), \\ y=g(u, \mathbf{x}),\end{array}\right.$ then

$$
\begin{equation*}
P=\left(g, \mathcal{L}_{\mathbf{f}}(g), \ldots, \mathcal{L}_{\mathbf{f}}^{n}(g)\right) \tag{2}
\end{equation*}
$$

where $D_{u}(h)=\sum_{j \geq 0} u^{(j+1)} \cdot \partial_{u^{(j)}} h$ and $\mathcal{L}_{\mathbf{f}}(h)=\sum_{i=1}^{n} f_{i} \partial_{x_{i}} h+D_{u}(h)$ is the Lie-derivative of h w.r.t. \mathbf{f}, defines a rational parametrization of $\mathbb{V}(\mathcal{S})$.

Realization $\mathcal{S} \rightarrow \Sigma$

Necessary condition

A necessary condition for the existence of a realization of \mathcal{S} is that $\mathbb{V}(\mathcal{S})$ admits a rational parametrization.

Realization $\mathcal{S} \rightarrow \Sigma$

Necessary condition

A necessary condition for the existence of a realization of \mathcal{S} is that $\mathbb{V}(\mathcal{S})$ admits a rational parametrization.

Assume that $\mathbb{V}(\mathcal{S})$ with $\mathcal{S} \subset \bar{K}\left[y, \ldots, y^{(n)}, u^{(\infty)}\right]$ admits a rational parametrization $P=\left(P_{0}, \ldots, P_{n}\right) \in \overline{K\left(u^{(\infty)}\right)}(\mathbf{x})^{n+1}$. Then we seek for a reparametrization $P(\mathbf{x}(\mathbf{t}))$ that additionally fulfills the differential relations

$$
\begin{equation*}
\mathcal{J}\left(P_{0}, \ldots, P_{n-1}\right) \cdot \mathbf{x}^{\prime}=\left(P_{1}-D_{u}\left(P_{0}\right), \ldots, P_{n}-D_{u}\left(P_{n-1}\right)\right) \tag{3}
\end{equation*}
$$

Realization $\mathcal{S} \rightarrow \Sigma$

Necessary condition

A necessary condition for the existence of a realization of \mathcal{S} is that $\mathbb{V}(\mathcal{S})$ admits a rational parametrization.

Assume that $\mathbb{V}(\mathcal{S})$ with $\mathcal{S} \subset \bar{K}\left[y, \ldots, y^{(n)}, u^{(\infty)}\right]$ admits a rational parametrization $P=\left(P_{0}, \ldots, P_{n}\right) \in \overline{K\left(u^{(\infty)}\right)}(\mathbf{x})^{n+1}$. Then we seek for a reparametrization $P(\mathbf{x}(\mathbf{t}))$ that additionally fulfills the differential relations

$$
\begin{equation*}
\mathcal{J}\left(P_{0}, \ldots, P_{n-1}\right) \cdot \mathbf{x}^{\prime}=\left(P_{1}-D_{u}\left(P_{0}\right), \ldots, P_{n}-D_{u}\left(P_{n-1}\right)\right) \tag{3}
\end{equation*}
$$

Correspondence theorem

\mathcal{S} has a realization iff $\mathbb{V}(\mathcal{S})$ has a rational parametrization such that (3) is independent of derivatives of u.

Realization $\mathcal{S} \rightarrow \Sigma$

Important facts

(1) The correspondence theorem is sometimes still hard to verify. For systems of low order, however, it can algorithmically verified.

Realization $\mathcal{S} \rightarrow \Sigma$

Important facts

(1) The correspondence theorem is sometimes still hard to verify. For systems of low order, however, it can algorithmically verified.
(2) For a realization $\Sigma=\left\{\mathbf{x}^{\prime}=\mathbf{f}(u, \mathbf{x}), y=g(u, \mathbf{x})\right.$ and some $\mathbf{s} \in \bar{K}(\mathbf{x})^{m}$ with invertible Jacobi-matrix,

$$
\begin{equation*}
\mathbf{x}^{\prime}=\mathcal{J}(\mathbf{s}(\mathbf{x}))^{-1} \cdot \mathbf{f}(u, \mathbf{s}), y=g(u, \mathbf{s}) \tag{4}
\end{equation*}
$$

is another realization of F.

Realization $\mathcal{S} \rightarrow \Sigma$

Important facts

(1) The correspondence theorem is sometimes still hard to verify. For systems of low order, however, it can algorithmically verified.
(2) For a realization $\Sigma=\left\{\mathbf{x}^{\prime}=\mathbf{f}(u, \mathbf{x}), y=g(u, \mathbf{x})\right.$ and some $\mathbf{s} \in \bar{K}(\mathbf{x})^{m}$ with invertible Jacobi-matrix,

$$
\begin{equation*}
\mathbf{x}^{\prime}=\mathcal{J}(\mathbf{s}(\mathbf{x}))^{-1} \cdot \mathbf{f}(u, \mathbf{s}), y=g(u, \mathbf{s}) \tag{4}
\end{equation*}
$$

is another realization of F.
(3) If the parametrization $P=\left(g, \mathcal{L}_{\mathfrak{f}}(g), \ldots\right)$ corresponding to Σ is birational, then all realizations of F can be found as in (4).

Realization $\mathcal{S} \rightarrow \Sigma$

Important facts

(1) The correspondence theorem is sometimes still hard to verify. For systems of low order, however, it can algorithmically verified.
(2) For a realization $\Sigma=\left\{\mathbf{x}^{\prime}=\mathbf{f}(u, \mathbf{x}), y=g(u, \mathbf{x})\right.$ and some $\mathbf{s} \in \bar{K}(\mathbf{x})^{m}$ with invertible Jacobi-matrix,

$$
\begin{equation*}
\mathbf{x}^{\prime}=\mathcal{J}(\mathbf{s}(\mathbf{x}))^{-1} \cdot \mathbf{f}(u, \mathbf{s}), y=g(u, \mathbf{s}) \tag{4}
\end{equation*}
$$

is another realization of F.
(3) If the parametrization $P=\left(g, \mathcal{L}_{\mathbf{f}}(g), \ldots\right)$ corresponding to Σ is birational, then all realizations of F can be found as in (4).

The case when $P=\left(g, \mathcal{L}_{\mathbf{f}}(g), \ldots\right)$ is a birational parametrizations corresponds to the case when \mathbf{x} is "globally observable" (important property in control theory).

Results on realizations in the curve case

Observability \leftrightarrow Birationality

Let $F \in \bar{K}\left[u, u^{\prime}, y, y^{\prime}\right]$ be realizable. Then there is an observable realization of F.

Results on realizations in the curve case

Observability \leftrightarrow Birationality

Let $F \in \bar{K}\left[u, u^{\prime}, y, y^{\prime}\right]$ be realizable. Then there is an observable realization of F.

Real realizations

Let $F \in \mathbb{R}\left[u, u^{\prime}, y, y^{\prime}\right]$ be realizable with $\left\{x^{\prime}=f(x, u), y=g(x, u)\right.$ (over $\mathbb{C})$. Then there is a real realization of F iff there is a reparametrization $s \in \mathbb{C}(x)$ of $P=\left(f, \mathcal{L}_{f}(g)\right)$ with $P(s) \in \mathbb{R}\left(u, u^{\prime}\right)(x)^{2}$.

Results on realizations in the curve case

Polynomial realizations

Let $F \in \bar{K}\left[u, u^{\prime}, y, y^{\prime}\right]$ be realizable with $\left\{x^{\prime}=f(u, x), y=g(u, x)\right.$. Then there is a polynomial realization of F iff

- u does not effectively occur in any denominator of f or g; and
- the common denominator q of the coefficients of g, seen as polynomial in u, is of the form $a \cdot(x-b)^{m}$ for some $a, b \in \bar{K}$ with m greater or equal to the degrees of the numerators of f, g; and
- $\frac{f(u, s)}{\partial_{x} s}$ with $s(x)=\frac{1+b x}{x}$ is polynomial.

Results on realizations in the curve case

Polynomial realizations

Let $F \in \bar{K}\left[u, u^{\prime}, y, y^{\prime}\right]$ be realizable with $\left\{x^{\prime}=f(u, x), y=g(u, x)\right.$. Then there is a polynomial realization of F iff

- u does not effectively occur in any denominator of f or g; and
- the common denominator q of the coefficients of g, seen as polynomial in u, is of the form $a \cdot(x-b)^{m}$ for some $a, b \in \bar{K}$ with m greater or equal to the degrees of the numerators of f, g; and
- $\frac{f(u, s)}{\partial_{x} s}$ with $s(x)=\frac{1+b x}{x}$ is polynomial.

In the affirmative case, $\left\{x^{\prime}=\frac{f(u, s)}{\partial_{x} s}, y=g(u, s)\right.$ is a polynomial realization.

Results on realizations in the curve case

Polynomial realizations

Let $F \in \bar{K}\left[u, u^{\prime}, y, y^{\prime}\right]$ be realizable with $\left\{x^{\prime}=f(u, x), y=g(u, x)\right.$. Then there is a polynomial realization of F iff

- u does not effectively occur in any denominator of f or g; and
- the common denominator q of the coefficients of g, seen as polynomial in u, is of the form $a \cdot(x-b)^{m}$ for some $a, b \in \bar{K}$ with m greater or equal to the degrees of the numerators of f, g; and
- $\frac{f(u, s)}{\partial_{x} s}$ with $s(x)=\frac{1+b x}{x}$ is polynomial.

In the affirmative case, $\left\{x^{\prime}=\frac{f(u, s)}{\partial_{x} s}, y=g(u, s)\right.$ is a polynomial realization.

All these results are algorithmic and can be extended to the case of higher-dimensional corresponding algebraic sets $\mathbb{V}(\mathcal{S})$ as sufficient conditions.

Example 3

Let us consider the non-observable realization

$$
\left\{x^{\prime}=\frac{1-x}{2 u}, y=\frac{(1-x)^{4}}{u^{2}+(1-x)^{6}}\right.
$$

corresponding to the rational parametrization

$$
P=\left(\frac{(1-x)^{4}}{u^{2}+(1-x)^{6}}, \frac{-\left(4 u^{2}(1-x)^{3}+2(1-x)^{9}+\left(u^{2}+(1-x)^{6}\right) u u^{\prime}\right)(1-x)^{4}}{\left(u^{2}+(1-x)^{6}\right)^{3}}\right) .
$$

We can choose the (algebraic) reparametrization $s:=1+\sqrt{1-x}$ which leads to the realization

$$
\left\{x^{\prime}=\frac{1-x}{u}, y=\frac{(1-x)^{2}}{u^{2}+(1-x)^{3}} .\right.
$$

Systems involving parameters

In a lot of applications there occur parameters that will be estimated from time-series data such as in the following commonly used SEIR epidemic model

$$
\Sigma=\left\{\begin{array}{l}
S^{\prime}(t)=-\frac{b S(t) l(t)}{n}, \tag{5}\\
E^{\prime}(t)=\frac{b S(t) l(t)}{n}-\nu E(t), \\
I^{\prime}(t)=\nu E(t)-a l(t), \\
y_{1}(t)=I(t) \\
y_{2}(t)=n
\end{array}\right.
$$

with the coefficient field $K=\mathbb{C}(a, b, \nu, n)$.

Systems involving parameters

In a lot of applications there occur parameters that will be estimated from time-series data such as in the following commonly used SEIR epidemic model

$$
\Sigma=\left\{\begin{array}{l}
S^{\prime}(t)=-\frac{b S(t) I(t)}{n}, \tag{5}\\
E^{\prime}(t)=\frac{b S(t) l(t)}{n}-\nu E(t), \\
I^{\prime}(t)=\nu E(t)-a I(t) \\
y_{1}(t)=I(t) \\
y_{2}(t)=n
\end{array}\right.
$$

with the coefficient field $K=\mathbb{C}(a, b, \nu, n)$.

Question

(1) Is (5) a good model for estimating parameters?
(2) If not, do we find an equivalent, better, model?

Identifiable parameters (informal)

Consider the ODE system Σ (over $\mathbb{C}(\mathbf{c}))$ as in (1). Assume that $\mathbf{x}(0), \mathbf{x}^{\prime}(0), \mathbf{u}(0) \rightarrow \mathbf{y}(0)$ (maybe even $\mathbf{x}^{\prime \prime}(0), \ldots, \mathbf{u}^{\prime}(0), \ldots, \mathbf{y}^{\prime}(0), \ldots$) are known.

Identifiable parameters (informal)

Consider the ODE system Σ (over $\mathbb{C}(\mathbf{c}))$ as in (1). Assume that $\mathbf{x}(0), \mathbf{x}^{\prime}(0), \mathbf{u}(0) \rightarrow \mathbf{y}(0)$ (maybe even $\left.\mathbf{x}^{\prime \prime}(0), \ldots, \mathbf{u}^{\prime}(0), \ldots, \mathbf{y}^{\prime}(0), \ldots\right)$ are known.

- If c_{i} is uniquely given from the resulting equations, then c_{i} is called a (globally) identifiable parameter.
- If c_{i} can have infinitely many values, it is called non-identifiable.
- Otherwise, c_{i} is called locally identifiable and can obtain finitely many values given by a polynomial function.

Identifiable functions

The smallest field $\mathbb{C} \subset \mathbb{K} \subset \mathbb{C}(\mathbf{c})$ such that $I_{\Sigma} \cap \mathbb{C}(\mathbf{c})\left[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}\right]$ is generated as an ideal by $I_{\Sigma} \cap \mathbb{K}\left[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}\right]$ is called the field of identifiable functions of $\Sigma . h \in \mathbb{C}(\mathbf{c})$ is called identifiable if $h \in \mathbb{K}$ and locally identifiable if $h \in \overline{\mathbb{K}}$.

Identifiable functions

The smallest field $\mathbb{C} \subset \mathbb{K} \subset \mathbb{C}(\mathbf{c})$ such that $I_{\Sigma} \cap \mathbb{C}(\mathbf{c})\left[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}\right]$ is generated as an ideal by $I_{\Sigma} \cap \mathbb{K}\left[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}\right]$ is called the field of identifiable functions of $\Sigma . h \in \mathbb{C}(\mathbf{c})$ is called identifiable if $h \in \mathbb{K}$ and locally identifiable if $h \in \overline{\mathbb{K}}$.

Rule of thumb

The identifiable functions are the rational expressions generated by the coefficients of the IO-equations.

Identifiable functions

The smallest field $\mathbb{C} \subset \mathbb{K} \subset \mathbb{C}(\mathbf{c})$ such that $I_{\Sigma} \cap \mathbb{C}(\mathbf{c})\left[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}\right]$ is generated as an ideal by $I_{\Sigma} \cap \mathbb{K}\left[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}\right]$ is called the field of identifiable functions of $\Sigma . h \in \mathbb{C}(\mathbf{c})$ is called identifiable if $h \in \mathbb{K}$ and locally identifiable if $h \in \overline{\mathbb{K}}$.

Rule of thumb

The identifiable functions are the rational expressions generated by the coefficients of the IO-equations.

The identifiable parameters are that which are identifiable functions themselves.

SEIR model

The corresponding IO-equations are
$n y_{1} y_{1}^{\prime \prime \prime}+\left(-n y_{1}^{\prime}+y_{1}\left(b y_{1}+n(a+\nu)\right)\right) y_{1}^{\prime \prime}-n(a+\nu) y_{1}^{\prime 2}+b y_{1}^{2}(a+\nu) y_{1}^{\prime}+a b \nu y_{1}^{3}$,
$y_{2}-n$
with $\mathbb{K}=\mathbb{C}\left(n, b, h_{1}:=a+\nu, h_{2}:=a \nu\right)$ as the field of identifiable functions.

Reparametrization

Given an ODE-system Σ with the IO-equations \mathcal{S} and the field of identifiable functions $\mathbb{C}\left(\mathbf{h}(\mathbf{c})\right.$), we seek for another realization Σ_{0} of \mathcal{S} over $\mathbb{C}(\mathbf{h})$. Thus, \mathbf{h} can then be used as a new set of parameters that are identifiable and Σ_{0} replaces Σ as model.

SEIR model

The parametrization corresponding to Σ is

$$
\begin{aligned}
P= & \left(I, \nu E-a l, \frac{b \nu S I-a n \nu E-n \nu^{2} E+a^{2} n I}{n}\right. \\
& \left.\frac{b n \nu^{2} S E-b^{2} \nu S I^{2}-2 a b n \nu S I-b n \nu^{2} S I+a^{2} n^{2} \nu E+a n^{2} \nu^{2} E+n^{2} \nu^{3} E-a^{3} n^{2} I}{n^{2}}, n\right) .
\end{aligned}
$$

SEIR model

The parametrization corresponding to Σ is

$$
\begin{aligned}
P= & \left(I, \nu E-a l, \frac{b \nu S I-a n \nu E-n \nu^{2} E+a^{2} n I}{n},\right. \\
& \left.\frac{b n \nu^{2} S E-b^{2} \nu S I^{2}-2 a b n \nu S I-b n \nu^{2} S I+a^{2} n^{2} \nu E+a n^{2} \nu^{2} E+n^{2} \nu^{3} E-a^{3} n^{2} I}{n^{2}}, n\right) .
\end{aligned}
$$

a is a root of the polynomial

$$
X^{2}-(a+\nu) X+a \nu \in=X^{2}-h_{1} X+h_{2} \mathbb{K}[X]
$$

We substitute

$$
S=z_{1,0}+a z_{1,1}, E=z_{2,0}+a z_{2,1}, I=z_{3,0}+a z_{3,1}
$$

into P, expand, and set the coefficients of a to zero. The resulting variety (called witness variety) is given by

$$
W:=\mathbb{V}\left(z_{1,0}, z_{3,1}, z_{3,0}+z_{2,0}\right) \cup \mathbb{V}\left(z_{2,0}, z_{2,1}, z_{3,0}, z_{3,1}\right)
$$

SEIR model

W has the birational parametrization

$$
\phi=\left(0, z_{1},-z_{3}, z_{2}, z_{3}, 0\right) .
$$

Then the resulting change of variables

$$
\left\{\begin{array}{l}
S=a z_{1}, \\
E=-z_{3}+a z_{2}, \\
I=z_{3},
\end{array}\right.
$$

leads to the equivalent system (over $\mathbb{C}\left(n, b, h_{1}=a+\nu, h_{2}=a \nu\right)$)

$$
\Sigma_{0}=\left\{\begin{array}{l}
z_{1}^{\prime}(t)=-\frac{b z_{1}(t) I(t)}{n}, \\
z_{2}^{\prime}(t)=-\frac{I(t)\left(n-b z_{1}(t)\right)}{n}, \\
I^{\prime}(t)=a \nu z_{2}(t)-(a+\nu) I(t)=h_{2} z_{2}(t)-h_{1} I(t), \\
y_{1}(t)=I(t) \\
y_{2}(t)=n
\end{array}\right.
$$

Tsen's theorem

Question

(1) Is it always possible to find Σ_{0} in identifiable parameters $\mathbf{h}(\mathbf{c})$?

Tsen's theorem

Question

(1) Is it always possible to find Σ_{0} in identifiable parameters $\mathbf{h}(\mathbf{c})$?
(2) What if c_{i} is non-identifiable?

Tsen's theorem

Question

(1) Is it always possible to find Σ_{0} in identifiable parameters $\mathbf{h}(\mathbf{c})$?
(2) What if c_{i} is non-identifiable? Answer: Substitute the parameter c_{i} with a "good" value.

Tsen's theorem

Question

(1) Is it always possible to find Σ_{0} in identifiable parameters $\mathbf{h}(\mathbf{c})$?
(2) What if c_{i} is non-identifiable? Answer: Substitute the parameter c_{i} with a "good" value.
(3) What if c_{i} is locally identifiable (as in SEIR)?

Tsen's theorem

Question

(1) Is it always possible to find Σ_{0} in identifiable parameters $\mathbf{h}(\mathbf{c})$?
(2) What if c_{i} is non-identifiable? Answer: Substitute the parameter c_{i} with a "good" value.
(3) What if c_{i} is locally identifiable (as in SEIR)?

Consider $K=\mathbb{C}(c)$ and $F \in K[\mathbf{y}]$.
Tsen's theorem
If $\mathbb{V}(F)$ is rational (over \bar{K}), then there is a rational parametrization over K.

Tsen's theorem

Question

(1) Is it always possible to find Σ_{0} in identifiable parameters $\mathbf{h}(\mathbf{c})$?
(2) What if c_{i} is non-identifiable? Answer: Substitute the parameter c_{i} with a "good" value.
(3) What if c_{i} is locally identifiable (as in SEIR)?

Consider $K=\mathbb{C}(c)$ and $F \in K[\mathbf{y}]$.
Tsen's theorem
If $\mathbb{V}(F)$ is rational (over \bar{K}), then there is a rational parametrization over K.

Consequently, if there is just one parameter c in a given ODE system Σ, then there is an equivalent realization Σ_{0} in an identifiable parameter $h(c)$.

Example 4

Let $F=a_{2} y_{0}^{2}+y_{1}^{2}-a_{1}^{2}$.

$$
P=\left(\frac{a_{1}}{\sqrt{a_{2}}} \cdot \frac{1-x^{2}}{1+x^{2}}, \frac{2 a_{1} x}{1+x^{2}}\right) \in \mathbb{Q}\left(a_{1}, \sqrt{a_{2}}\right)(x)^{2}
$$

is a rational parametrization of $\mathbb{V}(F)$. By elementary reasoning it can be shown that $\mathbb{V}(F)$ cannot be parametrized over $\mathbb{Q}\left(a_{1}, a_{2}\right)$.

Example 4

$$
\Sigma=\left\{\begin{array}{l}
x^{\prime}=-c_{2}\left(1+x^{2}\right) / 2 \\
y=\frac{c_{1}}{c_{2}} \cdot \frac{1-x^{2}}{1+x^{2}}
\end{array}\right.
$$

has for $c_{1}=a_{1}, c_{2}=a_{2}^{2}$ the corresponding parametrization P. The IO-equation

$$
F=c_{2}^{2} y_{0}^{2}+y_{1}^{2}-c_{1}^{2}
$$

has the identifiable functions $h_{1}=c_{1}^{2}, h_{2}=c_{2}^{2}$. Since there is no rational parametrization of $\mathbb{V}(F)$ with coefficients in $\mathbb{C}\left(h_{1}, h_{2}\right)$, there is no realization equivalent to Σ with just identifiable parameters.

Witness variety

Assume that the ODE system $\Sigma=\left\{\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{u}, \mathbf{x}), \mathbf{y}=\mathbf{g}(\mathbf{u}, \mathbf{x})\right.$ with corresponding rational parametrization P has a coefficient field that is algebraic over $\mathbb{C}(\mathbf{h})$ of degree n, where \mathbf{h} are the identifiable functions.
Substitute each x_{i} by

$$
x_{i}=z_{i, 0}+z_{i, 1} \alpha+\cdots+z_{i, m-1} \alpha^{m-1}
$$

where $z_{i, j}$ are new variables and α is the primitive element of the algebraic field extension. Write

$$
P=\left(\sum_{j=0}^{m-1} \frac{H_{1, j}(\mathbf{z})}{\delta(\mathbf{z})} \alpha^{j}, \ldots, \sum_{j=0}^{m-1} \frac{H_{n, j}(\mathbf{z})}{\delta(\mathbf{z})} \alpha^{j}\right)
$$

Define the witness variety W (associated to P and α) as the Zariski closure of $\mathbb{V}\left(\left\{H_{i, j}(\mathbf{z})\right\}_{1 \leq i \leq n, 1 \leq j \leq m-1}\right) \backslash \mathbb{V}(\delta(\mathbf{z}))$.

Identifiable functions

Assume that W has a component of dimension $\operatorname{dim}(\mathbb{V}(\mathcal{S}))$ with a birational parametrization $\left(s_{0}, \ldots, s_{n-1}\right) \in \mathbb{C}(\mathbf{h})(\mathbf{z})^{n}$. Then we can use the reparametrization

$$
s=s_{0}(\mathbf{z})+\cdots+s_{n-1}(\mathbf{z}) \cdot \alpha^{n-1}
$$

to obtain the realization

$$
\Sigma_{0}=\left\{\begin{array}{l}
\mathbf{z}^{\prime}=\mathcal{J}(\mathbf{s})^{-1} \cdot \mathbf{f}(\mathbf{u}, \mathbf{s}) \\
\mathbf{y}=\mathbf{g}(\mathbf{u}, \mathbf{s})
\end{array}\right.
$$

Identifiable functions

Assume that W has a component of dimension $\operatorname{dim}(\mathbb{V}(\mathcal{S}))$ with a birational parametrization $\left(s_{0}, \ldots, s_{n-1}\right) \in \mathbb{C}(\mathbf{h})(\mathbf{z})^{n}$. Then we can use the reparametrization

$$
s=s_{0}(\mathbf{z})+\cdots+s_{n-1}(\mathbf{z}) \cdot \alpha^{n-1}
$$

to obtain the realization

$$
\Sigma_{0}=\left\{\begin{array}{l}
\mathbf{z}^{\prime}=\mathcal{J}(\mathbf{s})^{-1} \cdot \mathbf{f}(\mathbf{u}, \mathbf{s}) \\
\mathbf{y}=\mathbf{g}(\mathbf{u}, \mathbf{s})
\end{array}\right.
$$

(1) In the case of $\operatorname{dim}(\mathbb{V}(\mathcal{S}))=1$, the existence of such a birational parametrization is equivalent to W having a component that is a hypercircle parametrizable over $\mathbb{C}(\mathbf{c})$.
(2) If P and the reparametrization are assumed to be polynomial, then W has to have a component that is a line (over $\mathbb{C}(\mathbf{c})$).

References

目 J.R. Sendra, F. Winkler, S. Perez-Diaz, Rational algebraic curves. Algorithms and Computation in Mathematics 22 (2008).

- S. Falkensteiner, D. Pavlov, J.R. Sendra, On real and observable realizations of input-output equations. arXiv:2303.16799, 2023.

回 S. Falkensteiner, A. Ovchinnikov, J.R. Sendra, Algorithm for globally identifiable reparametrizations of ODEs. arXiv:2401.00762, 2024.

