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Motivation

The solutions y(t) of the ODE-system

Σ =


x ′1(t) = x2(t)

2,

x ′2(t) = x1(t) u(t),

y(t) = x2(t)

and that of F = u(t)y ′′(t)− u(t)2 y(t)2 − u′(t) y ′(t) = 0 are the same.

Question
1 How to transform Σ into F and conversely, F into Σ?

2 Is this always possible? Under which assumptions for Σ
(polynomiality, real coefficients etc.)?
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Rational parametrizations S → P

Let S ⊂ K [y0, . . . , yn] be a finite set of polynomials (over a field K with
characteristic zero). We call

V(S) := {P ∈ K
n+1 | ∀F ∈ S : F (P) = 0}

the corresponding algebraic set.

A tuple P ∈ K (x1, . . . , xm)
n+1 \Kn+1

with
F (P) = 0 for every F ∈ S is called a (rational) parametrization of V(F ) iff
the Jacobian J (P) of P w.r.t. x = (x1, . . . , xm) has maximal rank.

1 P = (x3, x2) is a parametrization of the cusp V(y20 − y31 ).

2 The unit sphere V(y20 + y21 + y22 − 1) has the parametrization

P =
(

2x1
x21+x22+1

, 2x2
x21+x22+1

,
x21+x22−1

x21+x22+1

)
.
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Rational curves

Characterization theorem

Let F ∈ K [y0, y1]. V(F ) admits a rational parametrization iff the genus of
V(F ) is zero.

Important facts

1 The existence of a rational parametrization of an algebraic curve or
surface can algorithmically be decided and, in the affirmative case,
the parametrization can be computed.

2 Rational parametrizations of curves and surfaces can always be chosen
birationally. As a consequence, all such rational parametrizations
P,Q can be related by reparametrizations P(x) = Q(s(x)) with
s ∈ K (x1, . . . , xm)

m and invertible J (s), m ∈ {1, 2}.
3 Rational parametrizations of curves P ∈ L(x)2 can be found over

optimal fields, i.e., with coefficients in a minimal field extension
K ⊆ L ⊂ K . In fact, [L : K ] ≤ 2.
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Example 1

Let F = y20 + 2y21 − 1. Then V(F ) admits the birational parametrization

P =
(
1−x2

1+x2
,
√
2x

1+x2

)
over the optimal field of parametrization Q(

√
2).
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Implicitization S ← P

Given P =
(
p0
q , . . . ,

pn
q

)
∈ K (x1, . . . , xm)

n+1, we can always find a system

of algebraic polynomials S such that P is a rational parametrizations of
V(S):

By using Groebner bases, one can compute the intersection ideal

⟨y0 q − p0, . . . , yn q − pn, q z − 1⟩ ∩ K [y0, . . . , yn]

and the finite number of generators can be chosen as S.
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Example 1

From P =
(
1−x2

1+x2
,
√
2x

1+x2

)
we get the ideal generated by

(1 + x2)y0 − (1− x2), (1 + x2)y1 −
√
2x , (1 + x2)z − 1.

Its Groebner basis (w.r.t. z > x > y0 > y1) is

G = {y20 + 2y21 − 1, −
√
2xy1 − y0 + 1, −xy0 − x +

√
2y1, y0 − 2z + 1}

such that F = y20 + 2y21 − 1 is the only element in G ∩Q[y0, y1].
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Main questions

Do we have counterparts of the previous concepts in differential algebra?

1 Parametrizations / Implicitization

2 Birationality

3 Optimal coefficient fields and computation with parameters

4 Is it algorithmic?
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Differential algebra

Let us consider ODE models of the form

Σ =

{
x′ = f(u, x),

y = g(u, x)
(1)

with the components of f, g in K (u, x).

We define the (prime) differential
ideal of Σ as

IΣ =
[
q x′ − q f, q y − q g

]
: q∞ ⊂ K [x(∞), y(∞),u(∞)],

where q is the common denominator of f and g, and

I : a∞ =
{
r ∈ R | ∃ℓ : aℓr ∈ I

}
.
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Implicitization S ← Σ

IΣ can be represented in a finite way by using for instance the Thomas
decomposition or regular differential chains.

Important facts

1 The result is a finite number of (reduced) triangular sets with one
essential component G.

2 The general solution of G and that of IΣ coincides.

3 Using the ordering y ′i , u
′
i < x ′i , the intersection ideal

IΣ ∩ K [y(∞),u(∞)] is generated by G ∩ K [y(∞),u(∞)].

Implicitization

S = G ∩ K [y(∞),u(∞)] are called the IO-equations corresponding to Σ.
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Example 2

Consider

Σ =

{
x ′ = − x2−1

3x2
,

y = x3.

Then y ′ = −3x2 · x2−1
3x2

= −x2 + 1 and

Resx(y − x3, y ′ + x2 − 1) = y ′3 + y2 − 3y ′2 + 3y ′ − 1

is the IO-equation of Σ.
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Realization problem

Given S ⊂ K [y(∞),u(∞)], one can ask the question whether there is a
system Σ as in (1) such that S are the IO-equations of Σ. In the
affirmative case, Σ is called a realization of S.

Finding a realization is similar to the problem of finding a rational
parametrizations of a given set algebraic set.
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Algebro-geometric approach

Given S ⊂ K [y (∞), u(∞)], we now forget about the differential relations
and consider y (i)(t) =: yi as independent variables.

Parametrization

If S has a realization Σ =

{
x′ = f(u, x),

y = g(u, x),
then

P = (g ,Lf(g), . . . ,Lnf (g)), (2)

where Du(h) =
∑

j≥0 u
(j+1) · ∂u(j)h and Lf(h) =

∑n
i=1 fi ∂xih + Du(h) is

the Lie-derivative of h w.r.t. f, defines a rational parametrization of V(S).
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Realization S → Σ

Necessary condition

A necessary condition for the existence of a realization of S is that V(S)
admits a rational parametrization.

Assume that V(S) with S ⊂ K [y , . . . , y (n), u(∞)] admits a rational

parametrization P = (P0, . . . ,Pn) ∈ K (u(∞))(x)n+1. Then we seek for a
reparametrization P(x(t)) that additionally fulfills the differential relations

J (P0, . . . ,Pn−1) · x′ = (P1 − Du(P0), . . . ,Pn − Du(Pn−1)). (3)

Correspondence theorem

S has a realization iff V(S) has a rational parametrization such that (3) is
independent of derivatives of u.
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Realization S → Σ

Important facts

1 The correspondence theorem is sometimes still hard to verify. For
systems of low order, however, it can algorithmically verified.

2 For a realization Σ = {x′ = f(u, x), y = g(u, x) and some s ∈ K (x)m

with invertible Jacobi-matrix,

x′ = J (s(x))−1 · f(u, s), y = g(u, s) (4)

is another realization of F .

3 If the parametrization P = (g ,Lf(g), . . .) corresponding to Σ is
birational, then all realizations of F can be found as in (4).

The case when P = (g ,Lf(g), . . .) is a birational parametrizations
corresponds to the case when x is “globally observable” (important
property in control theory).
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Results on realizations in the curve case

Observability ↔ Birationality

Let F ∈ K [u, u′, y , y ′] be realizable. Then there is an observable
realization of F .

Real realizations

Let F ∈ R[u, u′, y , y ′] be realizable with {x ′ = f (x , u), y = g(x , u) (over
C). Then there is a real realization of F iff there is a reparametrization
s ∈ C(x) of P = (f ,Lf (g)) with P(s) ∈ R(u, u′)(x)2.
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Results on realizations in the curve case

Polynomial realizations

Let F ∈ K [u, u′, y , y ′] be realizable with {x ′ = f (u, x), y = g(u, x). Then
there is a polynomial realization of F iff

u does not effectively occur in any denominator of f or g ; and

the common denominator q of the coefficients of g , seen as
polynomial in u, is of the form a · (x − b)m for some a, b ∈ K with m
greater or equal to the degrees of the numerators of f , g ; and
f (u,s)
∂x s

with s(x) = 1+bx
x is polynomial.

In the affirmative case, {x ′ = f (u,s)
∂x s

, y = g(u, s) is a polynomial realization.

All these results are algorithmic and can be extended to the case of
higher-dimensional corresponding algebraic sets V(S) as sufficient
conditions.
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Example 3

Let us consider the non-observable realization

{x ′ = 1−x
2u , y = (1−x)4

u2+(1−x)6

corresponding to the rational parametrization

P =
(

(1−x)4

u2+(1−x)6 ,
−(4u2(1−x)3+2(1−x)9+(u2+(1−x)6)uu′)(1−x)4

(u2+(1−x)6)3

)
.

We can choose the (algebraic) reparametrization s := 1 +
√
1− x which

leads to the realization

{x ′ = 1−x
u , y = (1−x)2

u2+(1−x)3
.
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Systems involving parameters

In a lot of applications there occur parameters that will be estimated from
time-series data such as in the following commonly used SEIR epidemic
model

Σ =



S ′(t) = −bS(t)I (t)
n ,

E ′(t) = bS(t)I (t)
n − νE (t),

I ′(t) = νE (t)− aI (t),

y1(t) = I (t),

y2(t) = n

(5)

with the coefficient field K = C(a, b, ν, n).

Question
1 Is (5) a good model for estimating parameters?

2 If not, do we find an equivalent, better, model?
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Identifiable parameters (informal)

Consider the ODE system Σ (over C(c)) as in (1). Assume that
x(0), x′(0),u(0)→ y(0) (maybe even x′′(0), . . . ,u′(0), . . . , y′(0), . . .) are
known.

If ci is uniquely given from the resulting equations, then ci is called a
(globally) identifiable parameter.

If ci can have infinitely many values, it is called non-identifiable.

Otherwise, ci is called locally identifiable and can obtain finitely many
values given by a polynomial function.
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Identifiable functions

The smallest field C ⊂ K ⊂ C(c) such that IΣ ∩ C(c)[y(∞),u(∞)] is
generated as an ideal by IΣ ∩K[y(∞),u(∞)] is called the field of
identifiable functions of Σ. h ∈ C(c) is called identifiable if h ∈ K and
locally identifiable if h ∈ K.

Rule of thumb

The identifiable functions are the rational expressions generated by the
coefficients of the IO-equations.

The identifiable parameters are that which are identifiable functions
themselves.
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SEIR model

The corresponding IO-equations are

ny1y
′′′
1 + (−ny ′

1 + y1(by1 + n(a+ ν)))y ′′
1 − n(a+ ν)y ′2

1 + by2
1 (a+ ν)y ′

1 + abνy3
1 ,

y2 − n

with K = C(n, b, h1 := a+ ν, h2 := aν) as the field of identifiable
functions.
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Reparametrization

Given an ODE-system Σ with the IO-equations S and the field of
identifiable functions C(h(c)), we seek for another realization Σ0 of S over
C(h). Thus, h can then be used as a new set of parameters that are
identifiable and Σ0 replaces Σ as model.
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SEIR model

The parametrization corresponding to Σ is

P =
(
I , νE − aI , bνSI−anνE−nν2E+a2nI

n ,

bnν2SE−b2νSI 2−2abnνSI−bnν2SI+a2n2νE+an2ν2E+n2ν3E−a3n2I
n2

, n
)
.

a is a root of the polynomial

X 2 − (a+ ν)X + aν ∈= X 2 − h1X + h2K[X ].

We substitute

S = z1,0 + a z1,1,E = z2,0 + a z2,1, I = z3,0 + a z3,1

into P, expand, and set the coefficients of a to zero. The resulting variety
(called witness variety) is given by

W := V(z1,0, z3,1, z3,0 + z2,0) ∪ V(z2,0, z2,1, z3,0, z3,1).
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SEIR model

W has the birational parametrization

ϕ = (0, z1,−z3, z2, z3, 0).

Then the resulting change of variables
S = az1,

E = −z3 + az2,

I = z3,

leads to the equivalent system (over C(n, b, h1 = a+ ν, h2 = aν))

Σ0 =



z ′1(t) = −
bz1(t)I (t)

n ,

z ′2(t) = −
I (t)(n−bz1(t))

n ,

I ′(t) = aνz2(t)− (a+ ν)I (t) = h2z2(t)− h1I (t),

y1(t) = I (t),

y2(t) = n.
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Tsen’s theorem

Question
1 Is it always possible to find Σ0 in identifiable parameters h(c)?

2 What if ci is non-identifiable? Answer: Substitute the parameter ci
with a “good” value.

3 What if ci is locally identifiable (as in SEIR)?

Consider K = C(c) and F ∈ K [y].

Tsen’s theorem

If V(F ) is rational (over K ), then there is a rational parametrization over
K .

Consequently, if there is just one parameter c in a given ODE system Σ,
then there is an equivalent realization Σ0 in an identifiable parameter h(c).
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Example 4

Let F = a2y
2
0 + y21 − a21.

P =
(

a1√
a2
· 1−x2

1+x2
, 2a1x
1+x2

)
∈ Q(a1,

√
a2)(x)

2

is a rational parametrization of V(F ). By elementary reasoning it can be
shown that V(F ) cannot be parametrized over Q(a1, a2).
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Example 4

Σ =

{
x ′ = −c2(1 + x2)/2,

y = c1
c2
· 1−x2

1+x2

has for c1 = a1, c2 = a22 the corresponding parametrization P. The
IO-equation

F = c22y
2
0 + y21 − c21

has the identifiable functions h1 = c21 , h2 = c22 . Since there is no rational
parametrization of V(F ) with coefficients in C(h1, h2), there is no
realization equivalent to Σ with just identifiable parameters.
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Witness variety

Assume that the ODE system Σ = {x′ = f(u, x), y = g(u, x) with
corresponding rational parametrization P has a coefficient field that is
algebraic over C(h) of degree n, where h are the identifiable functions.
Substitute each xi by

xi = zi ,0 + zi ,1α+ · · ·+ zi ,m−1α
m−1,

where zi ,j are new variables and α is the primitive element of the algebraic
field extension. Write

P =

m−1∑
j=0

H1,j(z)

δ(z)
αj , . . . ,

m−1∑
j=0

Hn,j(z)

δ(z)
αj

 .

Define the witness variety W (associated to P and α) as the Zariski
closure of V({Hi ,j(z)}1≤i≤n,1≤j≤m−1) \ V(δ(z)).

S. Falkensteiner (MPI Leipzig) Rational parametrizations in DA June 12th, 2024 30 / 32



Identifiable functions

Assume that W has a component of dimension dim(V(S)) with a
birational parametrization (s0, . . . , sn−1) ∈ C(h)(z)n. Then we can use the
reparametrization

s = s0(z) + · · ·+ sn−1(z) · αn−1

to obtain the realization

Σ0 =

{
z′ = J (s)−1 · f(u, s),
y = g(u, s).

1 In the case of dim(V(S)) = 1, the existence of such a birational
parametrization is equivalent to W having a component that is a
hypercircle parametrizable over C(c).

2 If P and the reparametrization are assumed to be polynomial, then W
has to have a component that is a line (over C(c)).
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