Rational parametrizations in differential algebra

Sebastian Falkensteiner

previously: Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany; Research Institute for Symbolic Computation Hagenberg, Austria

June 12th, 2024

Overview

Algebraic Geometry

- Rational parametrizations
- Rational curves

2 Differential algebra

- Implicitization
- Algebro-geometric approach
- Realizations
- Results on realizations

Systems involving parameters

- SEIR model
- Identifiable functions
- Reparametrization
- Tsen's theorem
- Witness variety

The solutions y(t) of the ODE-system

$$\Sigma = \begin{cases} x'_1(t) = x_2(t)^2, \\ x'_2(t) = x_1(t) u(t), \\ y(t) = x_2(t) \end{cases}$$

and that of $F = u(t)y''(t) - u(t)^2 y(t)^2 - u'(t) y'(t) = 0$ are the same.

The solutions y(t) of the ODE-system

$$\Sigma = \begin{cases} x'_1(t) = x_2(t)^2, \\ x'_2(t) = x_1(t) u(t), \\ y(t) = x_2(t) \end{cases}$$

and that of $F = u(t)y''(t) - u(t)^2 y(t)^2 - u'(t) y'(t) = 0$ are the same.

- **1** How to transform Σ into F and conversely, F into Σ ?
- Is this always possible? Under which assumptions for Σ (polynomiality, real coefficients etc.)?

$$\mathbb{V}(\mathcal{S}) := \{ P \in \overline{K}^{n+1} \mid \forall F \in \mathcal{S} : F(P) = 0 \}$$

the corresponding algebraic set.

$$\mathbb{V}(\mathcal{S}) := \{ P \in \overline{K}^{n+1} \mid \forall F \in \mathcal{S} : F(P) = 0 \}$$

the corresponding algebraic set. A tuple $P \in \overline{K}(x_1, \ldots, x_m)^{n+1} \setminus \overline{K}^{n+1}$ with F(P) = 0 for every $F \in S$ is called a (rational) parametrization of $\mathbb{V}(F)$ iff the Jacobian $\mathcal{J}(P)$ of P w.r.t. $\mathbf{x} = (x_1, \ldots, x_m)$ has maximal rank.

$$\mathbb{V}(\mathcal{S}) := \{ P \in \overline{K}^{n+1} \mid \forall F \in \mathcal{S} : F(P) = 0 \}$$

the corresponding algebraic set. A tuple $P \in \overline{K}(x_1, \ldots, x_m)^{n+1} \setminus \overline{K}^{n+1}$ with F(P) = 0 for every $F \in S$ is called a (rational) parametrization of $\mathbb{V}(F)$ iff the Jacobian $\mathcal{J}(P)$ of P w.r.t. $\mathbf{x} = (x_1, \ldots, x_m)$ has maximal rank.

• $P = (x^3, x^2)$ is a parametrization of the cusp $\mathbb{V}(y_0^2 - y_1^3)$.

$$\mathbb{V}(\mathcal{S}) := \{ P \in \overline{K}^{n+1} \mid \forall F \in \mathcal{S} : F(P) = 0 \}$$

the corresponding algebraic set. A tuple $P \in \overline{K}(x_1, \ldots, x_m)^{n+1} \setminus \overline{K}^{n+1}$ with F(P) = 0 for every $F \in S$ is called a (rational) parametrization of $\mathbb{V}(F)$ iff the Jacobian $\mathcal{J}(P)$ of P w.r.t. $\mathbf{x} = (x_1, \ldots, x_m)$ has maximal rank.

• $P = (x^3, x^2)$ is a parametrization of the cusp $\mathbb{V}(y_0^2 - y_1^3)$. • The unit sphere $\mathbb{V}(y_0^2 + y_1^2 + y_2^2 - 1)$ has the parametrization $P = \left(\frac{2x_1}{x^2 + x^2 + 1}, \frac{2x_2}{x^2 + x^2 + 1}, \frac{x_1^2 + x_2^2 - 1}{x^2 + x^2 + 1}\right)$.

Characterization theorem

Let $F \in K[y_0, y_1]$. $\mathbb{V}(F)$ admits a rational parametrization iff the genus of $\mathbb{V}(F)$ is zero.

Characterization theorem

Let $F \in K[y_0, y_1]$. $\mathbb{V}(F)$ admits a rational parametrization iff the genus of $\mathbb{V}(F)$ is zero.

Important facts

The existence of a rational parametrization of an algebraic curve or surface can algorithmically be decided and, in the affirmative case, the parametrization can be computed.

Characterization theorem

Let $F \in K[y_0, y_1]$. $\mathbb{V}(F)$ admits a rational parametrization iff the genus of $\mathbb{V}(F)$ is zero.

Important facts

- The existence of a rational parametrization of an algebraic curve or surface can algorithmically be decided and, in the affirmative case, the parametrization can be computed.
- Q Rational parametrizations of curves and surfaces can always be chosen birationally. As a consequence, all such rational parametrizations P, Q can be related by reparametrizations P(x) = Q(s(x)) with s ∈ K(x₁,...,x_m)^m and invertible J(s), m ∈ {1,2}.

Characterization theorem

Let $F \in K[y_0, y_1]$. $\mathbb{V}(F)$ admits a rational parametrization iff the genus of $\mathbb{V}(F)$ is zero.

Important facts

- The existence of a rational parametrization of an algebraic curve or surface can algorithmically be decided and, in the affirmative case, the parametrization can be computed.
- Q Rational parametrizations of curves and surfaces can always be chosen birationally. As a consequence, all such rational parametrizations P, Q can be related by reparametrizations P(x) = Q(s(x)) with s ∈ K(x₁,...,x_m)^m and invertible J(s), m ∈ {1,2}.
- Rational parametrizations of curves P ∈ L(x)² can be found over optimal fields, i.e., with coefficients in a minimal field extension K ⊆ L ⊂ K̄. In fact, [L : K] ≤ 2.

Example 1

Let $F = y_0^2 + 2y_1^2 - 1$. Then $\mathbb{V}(F)$ admits the birational parametrization $P = \left(\frac{1-x^2}{1+x^2}, \frac{\sqrt{2}x}{1+x^2}\right)$

over the optimal field of parametrization $\mathbb{Q}(\sqrt{2})$.

Given $P = \left(\frac{p_0}{q}, \ldots, \frac{p_n}{q}\right) \in \overline{K}(x_1, \ldots, x_m)^{n+1}$, we can always find a system of algebraic polynomials S such that P is a rational parametrizations of $\mathbb{V}(S)$:

Given $P = \left(\frac{p_0}{q}, \ldots, \frac{p_n}{q}\right) \in \overline{K}(x_1, \ldots, x_m)^{n+1}$, we can always find a system of algebraic polynomials S such that P is a rational parametrizations of $\mathbb{V}(S)$: By using Groebner bases, one can compute the intersection ideal

$$\langle y_0 q - p_0, \ldots, y_n q - p_n, q z - 1 \rangle \cap \overline{K}[y_0, \ldots, y_n]$$

and the finite number of generators can be chosen as S.

From
$$P = \left(\frac{1-x^2}{1+x^2}, \frac{\sqrt{2}x}{1+x^2}\right)$$
 we get the ideal generated by
 $(1+x^2)y_0 - (1-x^2), (1+x^2)y_1 - \sqrt{2}x, (1+x^2)z - 1.$

From
$$P = \left(\frac{1-x^2}{1+x^2}, \frac{\sqrt{2}x}{1+x^2}\right)$$
 we get the ideal generated by
 $(1+x^2)y_0 - (1-x^2), (1+x^2)y_1 - \sqrt{2}x, (1+x^2)z - 1.$

Its Groebner basis (w.r.t. $z > x > y_0 > y_1$) is

$$\mathcal{G} = \{y_0^2 + 2y_1^2 - 1, \ -\sqrt{2}xy_1 - y_0 + 1, \ -xy_0 - x + \sqrt{2}y_1, \ y_0 - 2z + 1\}$$

such that $F = y_0^2 + 2y_1^2 - 1$ is the only element in $\mathcal{G} \cap \overline{\mathbb{Q}}[y_0, y_1]$.

Do we have counterparts of the previous concepts in differential algebra?

- Parametrizations / Implicitization
- Ø Birationality
- Optimal coefficient fields and computation with parameters
- Is it algorithmic?

Differential algebra

Let us consider ODE models of the form

$$\Sigma = \begin{cases} \mathbf{x}' = \mathbf{f}(\mathbf{u}, \mathbf{x}), \\ \mathbf{y} = \mathbf{g}(\mathbf{u}, \mathbf{x}) \end{cases}$$
(1)

with the components of \mathbf{f}, \mathbf{g} in $\overline{K}(\mathbf{u}, \mathbf{x})$.

Let us consider ODE models of the form

$$\Sigma = \begin{cases} \mathbf{x}' = \mathbf{f}(\mathbf{u}, \mathbf{x}), \\ \mathbf{y} = \mathbf{g}(\mathbf{u}, \mathbf{x}) \end{cases}$$
(1)

with the components of \mathbf{f}, \mathbf{g} in $\overline{K}(\mathbf{u}, \mathbf{x})$. We define the (prime) differential ideal of Σ as

$$I_{\Sigma} = \left[q \, \mathbf{x}' - q \, \mathbf{f}, q \, \mathbf{y} - q \, \mathbf{g} \right] : q^{\infty} \subset \overline{K}[\mathbf{x}^{(\infty)}, \mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}],$$

where q is the common denominator of f and g, and

$$I: a^{\infty} = \left\{ r \in R \mid \exists \ell : a^{\ell} r \in I \right\}.$$

 I_{Σ} can be represented in a finite way by using for instance the Thomas decomposition or regular differential chains.

 I_{Σ} can be represented in a finite way by using for instance the Thomas decomposition or regular differential chains.

Important facts

- The result is a finite number of (reduced) triangular sets with one essential component *G*.
- **2** The general solution of \mathcal{G} and that of I_{Σ} coincides.
- Using the ordering y'_i , $u'_i < x'_i$, the intersection ideal $I_{\Sigma} \cap \overline{K}[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}]$ is generated by $\mathcal{G} \cap \overline{K}[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}]$.

 I_{Σ} can be represented in a finite way by using for instance the Thomas decomposition or regular differential chains.

Important facts

- The result is a finite number of (reduced) triangular sets with one essential component G.
- **②** The general solution of \mathcal{G} and that of I_{Σ} coincides.
- Using the ordering $y'_i, u'_i < x'_i$, the intersection ideal $I_{\Sigma} \cap \overline{K}[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}]$ is generated by $\mathcal{G} \cap \overline{K}[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}]$.

Implicitization

 $\mathcal{S} = \mathcal{G} \cap \overline{\mathcal{K}}[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}]$ are called the IO-equations corresponding to Σ .

Consider

$$\Sigma = \begin{cases} x' = -\frac{x^2 - 1}{3x^2}, \\ y = x^3. \end{cases}$$

Consider $\Sigma = \begin{cases} x' = -\frac{x^2 - 1}{3x^2}, \\ y = x^3. \end{cases}$ Then $y' = -3x^2 \cdot \frac{x^2 - 1}{3x^2} = -x^2 + 1$ and $\operatorname{Res}_x(y - x^3, y' + x^2 - 1) = y'^3 + y^2 - 3y'^2 + 3y' - 1$

is the IO-equation of Σ .

Given $S \subset K[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}]$, one can ask the question whether there is a system Σ as in (1) such that S are the IO-equations of Σ . In the affirmative case, Σ is called a realization of S.

Given $S \subset K[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}]$, one can ask the question whether there is a system Σ as in (1) such that S are the IO-equations of Σ . In the affirmative case, Σ is called a realization of S.

Finding a realization is similar to the problem of finding a rational parametrizations of a given set algebraic set.

Given $S \subset K[y^{(\infty)}, u^{(\infty)}]$, we now forget about the differential relations and consider $y^{(i)}(t) =: y_i$ as independent variables.

Given $S \subset K[y^{(\infty)}, u^{(\infty)}]$, we now forget about the differential relations and consider $y^{(i)}(t) =: y_i$ as independent variables.

Parametrization

If
$$\mathcal{S}$$
 has a realization $\Sigma = \begin{cases} \mathbf{x}' = \mathbf{f}(u, \mathbf{x}), \\ y = g(u, \mathbf{x}), \end{cases}$ then

$$P = (g, \mathcal{L}_{\mathbf{f}}(g), \dots, \mathcal{L}_{\mathbf{f}}^{n}(g)),$$
(2)

where $D_u(h) = \sum_{j\geq 0} u^{(j+1)} \cdot \partial_{u^{(j)}} h$ and $\mathcal{L}_{\mathbf{f}}(h) = \sum_{i=1}^n f_i \partial_{x_i} h + D_u(h)$ is the Lie-derivative of h w.r.t. \mathbf{f} , defines a rational parametrization of $\mathbb{V}(S)$.

Necessary condition

A necessary condition for the existence of a realization of S is that $\mathbb{V}(S)$ admits a rational parametrization.

Necessary condition

A necessary condition for the existence of a realization of S is that $\mathbb{V}(S)$ admits a rational parametrization.

Assume that $\mathbb{V}(S)$ with $S \subset \overline{K}[y, \ldots, y^{(n)}, u^{(\infty)}]$ admits a rational parametrization $P = (P_0, \ldots, P_n) \in \overline{K(u^{(\infty)})}(\mathbf{x})^{n+1}$. Then we seek for a reparametrization $P(\mathbf{x}(\mathbf{t}))$ that additionally fulfills the differential relations

$$\mathcal{J}(P_0,\ldots,P_{n-1})\cdot \mathbf{x}' = (P_1 - D_u(P_0),\ldots,P_n - D_u(P_{n-1})).$$
(3)

Necessary condition

A necessary condition for the existence of a realization of S is that $\mathbb{V}(S)$ admits a rational parametrization.

Assume that $\mathbb{V}(S)$ with $S \subset \overline{K}[y, \dots, y^{(n)}, u^{(\infty)}]$ admits a rational parametrization $P = (P_0, \dots, P_n) \in \overline{K(u^{(\infty)})}(\mathbf{x})^{n+1}$. Then we seek for a reparametrization $P(\mathbf{x}(\mathbf{t}))$ that additionally fulfills the differential relations

$$\mathcal{J}(P_0,\ldots,P_{n-1})\cdot \mathbf{x}' = (P_1 - D_u(P_0),\ldots,P_n - D_u(P_{n-1})).$$
(3)

Correspondence theorem

S has a realization iff $\mathbb{V}(S)$ has a rational parametrization such that (3) is independent of derivatives of u.

Important facts

The correspondence theorem is sometimes still hard to verify. For systems of low order, however, it can algorithmically verified.

Important facts

- The correspondence theorem is sometimes still hard to verify. For systems of low order, however, it can algorithmically verified.
- So For a realization Σ = {x' = f(u, x), y = g(u, x) and some s ∈ $\overline{K}(x)^m$ with invertible Jacobi-matrix,

$$\mathbf{x}' = \mathcal{J}(\mathbf{s}(\mathbf{x}))^{-1} \cdot \mathbf{f}(u, \mathbf{s}), \ y = g(u, \mathbf{s})$$
(4)

is another realization of F.

Important facts

- The correspondence theorem is sometimes still hard to verify. For systems of low order, however, it can algorithmically verified.
- **②** For a realization $\Sigma = {\mathbf{x}' = \mathbf{f}(u, \mathbf{x}), y = g(u, \mathbf{x}) \text{ and some } \mathbf{s} \in \overline{K}(\mathbf{x})^m \text{ with invertible Jacobi-matrix,}}$

$$\mathbf{x}' = \mathcal{J}(\mathbf{s}(\mathbf{x}))^{-1} \cdot \mathbf{f}(u, \mathbf{s}), \ y = g(u, \mathbf{s})$$
(4)

is another realization of F.

If the parametrization P = (g, L_f(g),...) corresponding to Σ is birational, then all realizations of F can be found as in (4).

Important facts

- The correspondence theorem is sometimes still hard to verify. For systems of low order, however, it can algorithmically verified.
- **②** For a realization $\Sigma = {\mathbf{x}' = \mathbf{f}(u, \mathbf{x}), y = g(u, \mathbf{x}) \text{ and some } \mathbf{s} \in \overline{K}(\mathbf{x})^m \text{ with invertible Jacobi-matrix,}}$

$$\mathbf{x}' = \mathcal{J}(\mathbf{s}(\mathbf{x}))^{-1} \cdot \mathbf{f}(u, \mathbf{s}), \ y = g(u, \mathbf{s})$$
(4)

is another realization of F.

If the parametrization P = (g, L_f(g),...) corresponding to Σ is birational, then all realizations of F can be found as in (4).

The case when $P = (g, \mathcal{L}_{\mathbf{f}}(g), \ldots)$ is a birational parametrizations corresponds to the case when \mathbf{x} is "globally observable" (important property in control theory).

$\mathsf{Observability} \leftrightarrow \mathsf{Birationality}$

Let $F \in \overline{K}[u, u', y, y']$ be realizable. Then there is an observable realization of F.

$Observability \leftrightarrow Birationality$

Let $F \in \overline{K}[u, u', y, y']$ be realizable. Then there is an observable realization of F.

Real realizations

Let $F \in \mathbb{R}[u, u', y, y']$ be realizable with $\{x' = f(x, u), y = g(x, u) \text{ (over } \mathbb{C})$. Then there is a real realization of F iff there is a reparametrization $s \in \mathbb{C}(x)$ of $P = (f, \mathcal{L}_f(g))$ with $P(s) \in \mathbb{R}(u, u')(x)^2$.

Polynomial realizations

Let $F \in \overline{K}[u, u', y, y']$ be realizable with $\{x' = f(u, x), y = g(u, x)\}$. Then there is a polynomial realization of F iff

- u does not effectively occur in any denominator of f or g; and
- the common denominator q of the coefficients of g, seen as polynomial in u, is of the form a ⋅ (x b)^m for some a, b ∈ K with m greater or equal to the degrees of the numerators of f, g; and
 f(u,s)/a ≤ with s(x) = 1+bx/x is polynomial.

Polynomial realizations

Let $F \in \overline{K}[u, u', y, y']$ be realizable with $\{x' = f(u, x), y = g(u, x)\}$. Then there is a polynomial realization of F iff

- u does not effectively occur in any denominator of f or g; and
- the common denominator q of the coefficients of g, seen as polynomial in u, is of the form a ⋅ (x b)^m for some a, b ∈ K with m greater or equal to the degrees of the numerators of f, g; and

 ^{f(u,s)}/_{∂ s} with s(x) = ^{1+bx}/_x is polynomial.

In the affirmative case, $\{x' = \frac{f(u,s)}{\partial_x s}, y = g(u,s) \text{ is a polynomial realization.} \}$

Polynomial realizations

Let $F \in \overline{K}[u, u', y, y']$ be realizable with $\{x' = f(u, x), y = g(u, x)\}$. Then there is a polynomial realization of F iff

- u does not effectively occur in any denominator of f or g; and
- the common denominator q of the coefficients of g, seen as polynomial in u, is of the form a ⋅ (x b)^m for some a, b ∈ K with m greater or equal to the degrees of the numerators of f, g; and

 ^{f(u,s)}/_{∂ s} with s(x) = ^{1+bx}/_x is polynomial.

In the affirmative case, $\{x' = \frac{f(u,s)}{\partial_x s}, y = g(u,s) \text{ is a polynomial realization.} \}$

All these results are algorithmic and can be extended to the case of higher-dimensional corresponding algebraic sets $\mathbb{V}(S)$ as sufficient conditions.

Let us consider the non-observable realization

$$\{x' = \frac{1-x}{2u}, y = \frac{(1-x)^4}{u^2 + (1-x)^6}$$

corresponding to the rational parametrization

$$P = \left(\frac{(1-x)^4}{u^2 + (1-x)^6}, \frac{-(4u^2(1-x)^3 + 2(1-x)^9 + (u^2 + (1-x)^6)uu')(1-x)^4}{(u^2 + (1-x)^6)^3}\right)$$

We can choose the (algebraic) reparametrization $s := 1 + \sqrt{1-x}$ which leads to the realization

$$\{x' = \frac{1-x}{u}, y = \frac{(1-x)^2}{u^2 + (1-x)^3}.$$

In a lot of applications there occur parameters that will be estimated from time-series data such as in the following commonly used SEIR epidemic model

$$\Sigma = \begin{cases} S'(t) = -\frac{bS(t)I(t)}{n}, \\ E'(t) = \frac{bS(t)I(t)}{n} - \nu E(t), \\ I'(t) = \nu E(t) - aI(t), \\ y_1(t) = I(t), \\ y_2(t) = n \end{cases}$$
(5)

with the coefficient field $K = \mathbb{C}(a, b, \nu, n)$.

In a lot of applications there occur parameters that will be estimated from time-series data such as in the following commonly used SEIR epidemic model

$$\Sigma = \begin{cases} S'(t) = -\frac{bS(t)I(t)}{n}, \\ E'(t) = \frac{bS(t)I(t)}{n} - \nu E(t), \\ I'(t) = \nu E(t) - aI(t), \\ y_1(t) = I(t), \\ y_2(t) = n \end{cases}$$
(5)

with the coefficient field $K = \mathbb{C}(a, b, \nu, n)$.

- Is (5) a good model for estimating parameters?
- If not, do we find an equivalent, better, model?

Consider the ODE system Σ (over $\mathbb{C}(\mathbf{c})$) as in (1). Assume that $\mathbf{x}(0), \mathbf{x}'(0), \mathbf{u}(0) \to \mathbf{y}(0)$ (maybe even $\mathbf{x}''(0), \ldots, \mathbf{u}'(0), \ldots, \mathbf{y}'(0), \ldots$) are known.

Consider the ODE system Σ (over $\mathbb{C}(\mathbf{c})$) as in (1). Assume that $\mathbf{x}(0), \mathbf{x}'(0), \mathbf{u}(0) \rightarrow \mathbf{y}(0)$ (maybe even $\mathbf{x}''(0), \dots, \mathbf{u}'(0), \dots, \mathbf{y}'(0), \dots$) are known.

- If c_i is uniquely given from the resulting equations, then c_i is called a (globally) identifiable parameter.
- If c_i can have infinitely many values, it is called non-identifiable.
- Otherwise, *c_i* is called locally identifiable and can obtain finitely many values given by a polynomial function.

The smallest field $\mathbb{C} \subset \mathbb{K} \subset \mathbb{C}(\mathbf{c})$ such that $I_{\Sigma} \cap \mathbb{C}(\mathbf{c})[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}]$ is generated as an ideal by $I_{\Sigma} \cap \mathbb{K}[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}]$ is called the field of identifiable functions of Σ . $h \in \mathbb{C}(\mathbf{c})$ is called identifiable if $h \in \mathbb{K}$ and locally identifiable if $h \in \overline{\mathbb{K}}$.

The smallest field $\mathbb{C} \subset \mathbb{K} \subset \mathbb{C}(\mathbf{c})$ such that $I_{\Sigma} \cap \mathbb{C}(\mathbf{c})[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}]$ is generated as an ideal by $I_{\Sigma} \cap \mathbb{K}[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}]$ is called the field of identifiable functions of Σ . $h \in \mathbb{C}(\mathbf{c})$ is called identifiable if $h \in \mathbb{K}$ and locally identifiable if $h \in \overline{\mathbb{K}}$.

Rule of thumb

The identifiable functions are the rational expressions generated by the coefficients of the IO-equations.

The smallest field $\mathbb{C} \subset \mathbb{K} \subset \mathbb{C}(\mathbf{c})$ such that $I_{\Sigma} \cap \mathbb{C}(\mathbf{c})[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}]$ is generated as an ideal by $I_{\Sigma} \cap \mathbb{K}[\mathbf{y}^{(\infty)}, \mathbf{u}^{(\infty)}]$ is called the field of identifiable functions of Σ . $h \in \mathbb{C}(\mathbf{c})$ is called identifiable if $h \in \mathbb{K}$ and locally identifiable if $h \in \overline{\mathbb{K}}$.

Rule of thumb

The identifiable functions are the rational expressions generated by the coefficients of the IO-equations.

The identifiable parameters are that which are identifiable functions themselves.

The corresponding IO-equations are

$$\begin{split} ny_1y_1''' + (-ny_1' + y_1(by_1 + n(a+\nu)))y_1'' - n(a+\nu)y_1'^2 + by_1^2(a+\nu)y_1' + ab\nu y_1^3, \\ y_2 - n \end{split}$$

with $\mathbb{K} = \mathbb{C}(n, b, h_1 := a + \nu, h_2 := a\nu)$ as the field of identifiable functions.

Given an ODE-system Σ with the IO-equations S and the field of identifiable functions $\mathbb{C}(\mathbf{h}(\mathbf{c}))$, we seek for another realization Σ_0 of S over $\mathbb{C}(\mathbf{h})$. Thus, \mathbf{h} can then be used as a new set of parameters that are identifiable and Σ_0 replaces Σ as model.

SEIR model

The parametrization corresponding to $\boldsymbol{\Sigma}$ is

$$P = \left(I, \ \nu E - aI, \ \frac{b\nu SI - an\nu E - n\nu^2 E + a^2 nI}{n}, \\ \frac{bn\nu^2 SE - b^2 \nu SI^2 - 2abn\nu SI - bn\nu^2 SI + a^2 n^2 \nu E + an^2 \nu^2 E + n^2 \nu^3 E - a^3 n^2 I}{n^2}, \ n\right).$$

SEIR model

The parametrization corresponding to Σ is

$$P = \left(I, \ \nu E - aI, \ \frac{b\nu SI - an\nu E - n\nu^2 E + a^2nI}{n}, \\ \frac{bn\nu^2 SE - b^2\nu SI^2 - 2abn\nu SI - bn\nu^2 SI + a^2n^2\nu E + an^2\nu^2 E + n^2\nu^3 E - a^3n^2I}{n^2}, \ n\right).$$

a is a root of the polynomial

$$X^2 - (\mathbf{a} + \nu)X + \mathbf{a}\nu \in = X^2 - h_1X + h_2\mathbb{K}[X].$$

We substitute

$$S = z_{1,0} + a z_{1,1}, E = z_{2,0} + a z_{2,1}, I = z_{3,0} + a z_{3,1}$$

into P, expand, and set the coefficients of a to zero. The resulting variety (called witness variety) is given by

$$W := \mathbb{V}(z_{1,0}, z_{3,1}, z_{3,0} + z_{2,0}) \cup \mathbb{V}(z_{2,0}, z_{2,1}, z_{3,0}, z_{3,1}).$$

SEIR model

 $\ensuremath{\mathcal{W}}$ has the birational parametrization

$$\phi = (0, z_1, -z_3, z_2, z_3, 0).$$

Then the resulting change of variables

$$\begin{cases} S = az_1, \\ E = -z_3 + az_2, \\ I = z_3, \end{cases}$$

leads to the equivalent system (over $\mathbb{C}(n, b, h_1 = a + \nu, h_2 = a\nu)$)

$$\Sigma_{0} = \begin{cases} z_{1}'(t) = -\frac{bz_{1}(t)I(t)}{n}, \\ z_{2}'(t) = -\frac{I(t)(n-bz_{1}(t))}{n}, \\ I'(t) = a\nu z_{2}(t) - (a+\nu)I(t) = h_{2}z_{2}(t) - h_{1}I(t), \\ y_{1}(t) = I(t), \\ y_{2}(t) = n. \end{cases}$$

() Is it always possible to find Σ_0 in identifiable parameters $\mathbf{h}(\mathbf{c})$?

- **Q** Is it always possible to find Σ_0 in identifiable parameters $\mathbf{h}(\mathbf{c})$?
- **2** What if c_i is non-identifiable?

- **Q** Is it always possible to find Σ_0 in identifiable parameters $\mathbf{h}(\mathbf{c})$?
- What if c_i is non-identifiable? Answer: Substitute the parameter c_i with a "good" value.

- **0** Is it always possible to find Σ_0 in identifiable parameters $\mathbf{h}(\mathbf{c})$?
- What if c_i is non-identifiable? Answer: Substitute the parameter c_i with a "good" value.
- What if *c_i* is locally identifiable (as in SEIR)?

- **0** Is it always possible to find Σ_0 in identifiable parameters $\mathbf{h}(\mathbf{c})$?
- What if c_i is non-identifiable? Answer: Substitute the parameter c_i with a "good" value.
- **③** What if c_i is locally identifiable (as in SEIR)?

```
Consider K = \mathbb{C}(c) and F \in K[\mathbf{y}].
```

Tsen's theorem

If $\mathbb{V}(F)$ is rational (over \overline{K}), then there is a rational parametrization over K.

- **0** Is it always possible to find Σ_0 in identifiable parameters $\mathbf{h}(\mathbf{c})$?
- What if c_i is non-identifiable? Answer: Substitute the parameter c_i with a "good" value.
- What if *c_i* is locally identifiable (as in SEIR)?

Consider
$$K = \mathbb{C}(c)$$
 and $F \in K[\mathbf{y}]$.

Tsen's theorem

If $\mathbb{V}(F)$ is rational (over \overline{K}), then there is a rational parametrization over K.

Consequently, if there is just one parameter c in a given ODE system Σ , then there is an equivalent realization Σ_0 in an identifiable parameter h(c).

Let
$$F = a_2 y_0^2 + y_1^2 - a_1^2$$
.

$$P = \left(\frac{a_1}{\sqrt{a_2}} \cdot \frac{1 - x^2}{1 + x^2}, \frac{2a_1 x}{1 + x^2}\right) \in \mathbb{Q}(a_1, \sqrt{a_2})(x)^2$$

is a rational parametrization of $\mathbb{V}(F)$. By elementary reasoning it can be shown that $\mathbb{V}(F)$ cannot be parametrized over $\mathbb{Q}(a_1, a_2)$.

$$\Sigma = \begin{cases} x' = -c_2(1+x^2)/2, \\ y = \frac{c_1}{c_2} \cdot \frac{1-x^2}{1+x^2} \end{cases}$$

has for $c_1 = a_1, c_2 = a_2^2$ the corresponding parametrization P. The IO-equation

$$F = c_2^2 y_0^2 + y_1^2 - c_1^2$$

has the identifiable functions $h_1 = c_1^2$, $h_2 = c_2^2$. Since there is no rational parametrization of $\mathbb{V}(F)$ with coefficients in $\mathbb{C}(h_1, h_2)$, there is no realization equivalent to Σ with just identifiable parameters.

Assume that the ODE system $\Sigma = \{\mathbf{x}' = \mathbf{f}(\mathbf{u}, \mathbf{x}), \mathbf{y} = \mathbf{g}(\mathbf{u}, \mathbf{x}) \text{ with}$ corresponding rational parametrization P has a coefficient field that is algebraic over $\mathbb{C}(\mathbf{h})$ of degree n, where \mathbf{h} are the identifiable functions. Substitute each x_i by

$$\mathbf{x}_i = \mathbf{z}_{i,0} + \mathbf{z}_{i,1}\alpha + \dots + \mathbf{z}_{i,m-1}\alpha^{m-1},$$

where $z_{i,j}$ are new variables and α is the primitive element of the algebraic field extension. Write

$$P = \left(\sum_{j=0}^{m-1} \frac{H_{1,j}(\mathbf{z})}{\delta(\mathbf{z})} \alpha^j, \dots, \sum_{j=0}^{m-1} \frac{H_{n,j}(\mathbf{z})}{\delta(\mathbf{z})} \alpha^j\right).$$

Define the witness variety W (associated to P and α) as the Zariski closure of $\mathbb{V}(\{H_{i,j}(\mathbf{z})\}_{1 \le i \le n, 1 \le j \le m-1}) \setminus \mathbb{V}(\delta(\mathbf{z})).$

Identifiable functions

Assume that W has a component of dimension dim $(\mathbb{V}(S))$ with a birational parametrization $(s_0, \ldots, s_{n-1}) \in \mathbb{C}(\mathbf{h})(\mathbf{z})^n$. Then we can use the reparametrization

$$s = s_0(\mathbf{z}) + \cdots + s_{n-1}(\mathbf{z}) \cdot \alpha^{n-1}$$

to obtain the realization

$$\Sigma_0 = \begin{cases} \textbf{z}' = \mathcal{J}(\textbf{s})^{-1} \cdot \textbf{f}(\textbf{u},\textbf{s}), \\ \textbf{y} = \textbf{g}(\textbf{u},\textbf{s}). \end{cases}$$

31 / 32

Identifiable functions

Assume that W has a component of dimension dim $(\mathbb{V}(S))$ with a birational parametrization $(s_0, \ldots, s_{n-1}) \in \mathbb{C}(\mathbf{h})(\mathbf{z})^n$. Then we can use the reparametrization

$$s = s_0(\mathbf{z}) + \cdots + s_{n-1}(\mathbf{z}) \cdot \alpha^{n-1}$$

to obtain the realization

$$\Sigma_0 = \begin{cases} \mathsf{z}' = \mathcal{J}(\mathsf{s})^{-1} \cdot \mathsf{f}(\mathsf{u},\mathsf{s}), \\ \mathsf{y} = \mathsf{g}(\mathsf{u},\mathsf{s}). \end{cases}$$

- In the case of dim(V(S)) = 1, the existence of such a birational parametrization is equivalent to W having a component that is a hypercircle parametrizable over C(c).
- If P and the reparametrization are assumed to be polynomial, then W has to have a component that is a line (over C(c)).

- J.R. SENDRA, F. WINKLER, S. PEREZ-DIAZ, *Rational algebraic curves*. Algorithms and Computation in Mathematics 22 (2008).
- S. FALKENSTEINER, D. PAVLOV, J.R. SENDRA, On real and observable realizations of input-output equations. arXiv:2303.16799, 2023.
- S. FALKENSTEINER, A. OVCHINNIKOV, J.R. SENDRA, Algorithm for globally identifiable reparametrizations of ODEs. arXiv:2401.00762, 2024.