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The solutions y(t) of the ODE-system

X4 (1) = (£,
¥ = {4(8) = a(t) ult),
y(8) = xa(t)

and that of F = u(t)y”(t) — u(t)? y(t)? — v'(t) y'(t) = 0 are the same.
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The solutions y(t) of the ODE-system

and that of F = u(t)y”(t) — u(t)? y(t)? — v'(t) y'(t) = 0 are the same.

Question
@ How to transform ¥ into F and conversely, F into 27

@ s this always possible? Under which assumptions for ¥
(polynomiality, real coefficients etc.)?
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Rational parametrizations S — P

Let S C K|[yo,- .-, ¥n] be a finite set of polynomials (over a field K with
characteristic zero). We call

V(S):={Pe K" |VFeS:F(P)=0}

the corresponding algebraic set.

S. Falkensteiner (MPI Leipzig) Rational parametrizations in DA June 12th, 2024



Rational parametrizations S — P

Let S C K|[yo,- .-, ¥n] be a finite set of polynomials (over a field K with
characteristic zero). We call

V(S):={Pc K" |VFeS: F(P)=0}
the corresponding algebraic set. A tuple P € K(xq,...,Xnm)" ! \K"H with

F(P) =0 for every F € S is called a (rational) parametrization of V(F) iff
the Jacobian J(P) of P w.r.t. x = (x1,...,Xm) has maximal rank.
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Rational parametrizations S — P

Let S C K|[yo,- .-, ¥n] be a finite set of polynomials (over a field K with
characteristic zero). We call

V(S) :={Pe K™ |VFesS: F(P)=0}
the corresponding algebraic set. A tuple P € K(xq,...,Xnm)" ! \V"H with
F(P) =0 for every F € S is called a (rational) parametrization of V(F) iff

the Jacobian J(P) of P w.r.t. x = (x1,...,Xm) has maximal rank.

Q@ P = (x,x?) is a parametrization of the cusp V(y& — y7).
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Rational parametrizations S — P

Let S C K|[yo,- .-, ¥n] be a finite set of polynomials (over a field K with
characteristic zero). We call

V(S):={Pe K" |VFeS:F(P)=0}

the corresponding algebraic set. A tuple P € K(xq,...,Xnm)" ! \V"H with
F(P) =0 for every F € S is called a (rational) parametrization of V(F) iff
the Jacobian J(P) of P w.r.t. x = (x1,...,Xm) has maximal rank.

Q@ P = (x,x?) is a parametrization of the cusp V(y& — y7).
@ The unit sphere V()2 + y2 + y2 — 1) has the parametrization

P — 2x1 2xp X12+X22—1
T\ B+ X HxE+L x4l )
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Rational curves

Characterization theorem

Let F € K[yo, y1]- V(F) admits a rational parametrization iff the genus of
V(F) is zero.

S. Falkensteiner (MPI Leipzig)

Rational parametrizations in DA

June 12th, 2024



Rational curves

Characterization theorem

Let F € K[yo, y1].- V(F) admits a rational parametrization iff the genus of
V(F) is zero.

Important facts

© The existence of a rational parametrization of an algebraic curve or
surface can algorithmically be decided and, in the affirmative case,
the parametrization can be computed.
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Rational curves

Characterization theorem

Let F € K[yo, y1].- V(F) admits a rational parametrization iff the genus of
V(F) is zero.

Important facts

© The existence of a rational parametrization of an algebraic curve or
surface can algorithmically be decided and, in the affirmative case,
the parametrization can be computed.

@ Rational parametrizations of curves and surfaces can always be chosen
birationally. As a consequence, all such rational parametrizations
P, Q can be related by reparametrizations P(x) = Q(s(x)) with
s € K(x1,...,xm)™ and invertible J(s), m € {1,2}.
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Rational curves

Characterization theorem

Let F € K[yo, y1].- V(F) admits a rational parametrization iff the genus of
V(F) is zero.

Important facts

© The existence of a rational parametrization of an algebraic curve or
surface can algorithmically be decided and, in the affirmative case,
the parametrization can be computed.

@ Rational parametrizations of curves and surfaces can always be chosen
birationally. As a consequence, all such rational parametrizations
P, Q can be related by reparametrizations P(x) = Q(s(x)) with
s € K(xi,...,xm)™ and invertible J(s), m € {1,2}.

© Rational parametrizations of curves P € L(x)? can be found over

optimal fields, i.e., with coefficients in a minimal field extension
KCLCK. Infact, [L: K] <2.
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Example 1

Let F = y2 +2y? — 1. Then V(F) admits the birational parametrization

P = 1-x2  4/2x
T\ 1+x20 14x2

over the optimal field of parametrization Q(v/2).
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Implicitization § <+ P

Given P = %, ol %) € K(x1,-..,xm) ", we can always find a system

of algebraic polynomials S such that P is a rational parametrizations of
V(S):
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Implicitization § <+ P

Given P = <%, ol %) € K(x1,-..,xm) ", we can always find a system

of algebraic polynomials S such that P is a rational parametrizations of
V(S): By using Groebner bases, one can compute the intersection ideal

(oG —Po,---s¥nG—Pn, Gz — 1) N Klyo, ..., ¥n]

and the finite number of generators can be chosen as S.
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Example 1

From P = <i;—ﬁ, 1‘?;2) we get the ideal generated by

(1+x¥)yo — (1= x2), (14 x*)y1 — V2x, (1+x3)z —1.
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Example 1

From P = <i;—ﬁ, 1‘?;2) we get the ideal generated by
(1+x¥)yo — (1= x2), (14 x*)y1 — V2x, (1+x3)z —1.
Its Groebner basis (w.r.t. z > x > yp > y1) is
G={8+2% -1, —V2xy1 —yo +1, —xy0 — x + V2y1, yo — 2z + 1}

such that F = y2 + 2y2 — 1 is the only element in G N Q[yo, y1]-
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Do we have counterparts of the previous concepts in differential algebra?
@ Parametrizations / Implicitization
© Birationality
© Optimal coefficient fields and computation with parameters
Q Is it algorithmic?
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Differential algebra

Let us consider ODE models of the form

X =f(u,x),
> = {y = g(u,x) (1)

with the components of f, g in K(u,x).
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Differential algebra

Let us consider ODE models of the form

X =f(u,x),
> = {y = g(u,x) (1)

with the components of f, g in K(u,x). We define the (prime) differential
ideal of X as

Iy = [qx’ —qf,qy — qg] :g>® C ?[x(%)’y(w),u(oo)]’
where g is the common denominator of f and g, and

/:aooz{remaz;afre/}.
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Implicitization S < X

Is can be represented in a finite way by using for instance the Thomas
decomposition or regular differential chains.
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Implicitization S < X

Is can be represented in a finite way by using for instance the Thomas
decomposition or regular differential chains.

Important facts

@ The result is a finite number of (reduced) triangular sets with one
essential component G.

@ The general solution of G and that of /s coincides.

© Using the ordering y/, u! < x!, the intersection ideal
Is N V[y(oo), u(oo)] is generated by G N W[y(oo), u(oo)].
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Implicitization S < X

Is can be represented in a finite way by using for instance the Thomas
decomposition or regular differential chains.
Important facts

@ The result is a finite number of (reduced) triangular sets with one
essential component G.

@ The general solution of G and that of /s coincides.

© Using the ordering y/, u! < x!, the intersection ideal
Is N V[y(oo), u(oo)] is generated by G N W[y(oo), u(°°)].

Implicitization

S =GN K[y®),ul®>)] are called the |0-equations corresponding to ¥.
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Example 2

Consider
!/ _ x2—1
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Example 2

Consider

Then y' = —3x2 - X32X_1 = —x?>+1and

Resx(y _ X37y, +X2 o 1) — y/3 +y2 _ 3y/2 4 3y/ . 1

is the 10-equation of X.
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Realization problem

Given S € K[y(®),u(*)], one can ask the question whether there is a
system ¥ as in (1) such that S are the 10-equations of X. In the
affirmative case, ¥ is called a realization of S.
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Realization problem

Given S € K[y(®),u(*)], one can ask the question whether there is a
system ¥ as in (1) such that S are the 10-equations of X. In the
affirmative case, ¥ is called a realization of S.

Finding a realization is similar to the problem of finding a rational
parametrizations of a given set algebraic set.
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Algebro-geometric approach

Given S C K[y(®), u(*)], we now forget about the differential relations
and consider y()(t) =: y; as independent variables.
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Algebro-geometric approach

Given S C K[y(®), u(*)], we now forget about the differential relations
and consider y()(t) =: y; as independent variables.

Parametrization

I_f
If S has a realization ¥ = X (u; ), then
y = g(u,x),

where Dy(h) =35 ui*Y) - 9,4 h and Le(h) = Y7, £ O h + Du(h) is
the Lie-derivative of h w.r.t. f, defines a rational parametrization of V(S).

v
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Realization § — ¥

Necessary condition

A necessary condition for the existence of a realization of S is that V(S)
admits a rational parametrization.
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Realization § — ¥

Necessary condition

A necessary condition for the existence of a realization of S is that V(S)
admits a rational parametrization.

Assume that V(S) with S € K[y, ..., y(™, u(>)] admits a rational

parametrization P = (Py, ..., P,) € K(u(®))(x)"*!. Then we seek for a
reparametrization P(x(t)) that additionally fulfills the differential relations

j(P(), SN Pn—l) . X/ = (Pl — D,_,(Po), ey Pn — D,_,(P,,_l)). (3)
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Realization § — ¥

Necessary condition

A necessary condition for the existence of a realization of S is that V(S)
admits a rational parametrization.

Assume that V(S) with S € K[y, ..., y(™, u(>)] admits a rational
parametrization P = (Py, ..., P,) € K(u(®))(x)"*!. Then we seek for a
reparametrization P(x(t)) that additionally fulfills the differential relations

j(P(), SN Pn—l) . X/ = (Pl — D,_,(Po), ey Pn — D,_,(P,,_l)). (3)

Correspondence theorem

S has a realization iff V(S) has a rational parametrization such that (3) is
independent of derivatives of u.
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Realization § — ¥

Important facts

© The correspondence theorem is sometimes still hard to verify. For
systems of low order, however, it can algorithmically verified.
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Realization § — ¥

Important facts

© The correspondence theorem is sometimes still hard to verify. For
systems of low order, however, it can algorithmically verified.

@ For a realization ¥ = {x' = f(u,x),y = g(u,x) and some s € K(x)™
with invertible Jacobi-matrix,

x = j(s(x))_l : f(u, 5)7 y = g(u, S) (4)

is another realization of F.
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Realization § — ¥

Important facts

© The correspondence theorem is sometimes still hard to verify. For
systems of low order, however, it can algorithmically verified.

@ For a realization ¥ = {x' = f(u,x),y = g(u,x) and some s € K(x)™
with invertible Jacobi-matrix,

x = j(s(x))_l : f(u, 5)7 y = g(u, S) (4)

is another realization of F.

@ If the parametrization P = (g, L¢(g), . ..) corresponding to X is
birational, then all realizations of F can be found as in (4).
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Realization § — ¥

Important facts

© The correspondence theorem is sometimes still hard to verify. For
systems of low order, however, it can algorithmically verified.

@ For a realization ¥ = {x’ = f(u,x),y = g(u,x) and some s € K(x)™
with invertible Jacobi-matrix,

x = j(s(x))il : f(u, S), y = g(u, S) (4)

is another realization of F.

@ |If the parametrization P = (g, L¢(g), . ..) corresponding to X is
birational, then all realizations of F can be found as in (4).

The case when P = (g, L¢(g),...) is a birational parametrizations
corresponds to the case when x is “globally observable” (important
property in control theory).
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Results on realizations in the curve case

Observability <+ Birationality

Let F € K[u, u',y,y'] be realizable. Then there is an observable
realization of F.
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Results on realizations in the curve case

Observability <+ Birationality

Let F € K[u, u',y,y'] be realizable. Then there is an observable
realization of F.

Real realizations

Let F € R[u, .y, y'] be realizable with {x" = f(x, u),y = g(x, u) (over
C). Then there is a real realization of F iff there is a reparametrization
s € C(x) of P = (f,Ls(g)) with P(s) € R(u, u')(x)2.
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Results on realizations in the curve case

Polynomial realizations
Let F € K[u,u',y,y'] be realizable with {x' = f(u, x),y = g(u, x). Then
there is a polynomial realization of F iff

@ u does not effectively occur in any denominator of f or g; and

@ the common denominator g of the coefficients of g, seen as
polynomial in u, is of the form a- (x — b)™ for some a, b € K with m
greater or equal to the degrees of the numerators of f, g; and

o f(u 5) with s(x) = % is polynomial.
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Results on realizations in the curve case

Polynomial realizations
Let F € K[u,u',y,y'] be realizable with {x' = f(u, x),y = g(u, x). Then
there is a polynomial realization of F iff

@ u does not effectively occur in any denominator of f or g; and

@ the common denominator g of the coefficients of g, seen as
polynomial in u, is of the form a- (x — b)™ for some a, b € K with m
greater or equal to the degrees of the numerators of f, g; and

o f(u 5) with s(x) = % is polynomial.

In the afflrmative case, {x' = fg:’ss),y = g(u, s) is a polynomial realization.

v
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Results on realizations in the curve case

Polynomial realizations
Let F € K[u,u',y,y’] be realizable with {x’ = f(u,x),y = g(u,x). Then
there is a polynomial realization of F iff

@ u does not effectively occur in any denominator of f or g; and

@ the common denominator g of the coefficients of g, seen as
polynomial in u, is of the form a- (x — b)™ for some a, b € K with m
greater or equal to the degrees of the numerators of f, g; and

° f(” s) with s(x) = 22X is polynomial.

In the afflrmative case, {x' = f(a‘i’ss),y = g(u, s) is a polynomial realization.

v

All these results are algorithmic and can be extended to the case of
higher-dimensional corresponding algebraic sets V(S) as sufficient
conditions.
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Example 3

Let us consider the non-observable realization

r o 1— _ (1—x)*
X' =55y =or@p

corresponding to the rational parametrization

p— ( (1—x)* 7(4u2(17x)3+2(17x)9+(u2+(lfx)6)uu’)(lfx)[l) '

u?+(1—x)°®> (u2+(1—x)°)3

We can choose the (algebraic) reparametrization s := 1 4 /1 — x which
leads to the realization

/_1— o (1—><)2
X' =5y = o
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Systems involving parameters

In a lot of applications there occur parameters that will be estimated from
time-series data such as in the following commonly used SEIR epidemic
model

§'(1) = -2,
E(e) = SO0 g (e),
Y =<0(t)= I/E(t) — al(t), (5)
yi(t) = 1(0),
y2(t) =n

with the coefficient field K = C(a, b, v, n).
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Systems involving parameters

In a lot of applications there occur parameters that will be estimated from
time-series data such as in the following commonly used SEIR epidemic
model

S'(t) = -2,
E'(t) = M — vE(t),
Y=< I(t) = VE(t) — al(t), (5)
n(t) = I(t),
ya(t)=n

with the coefficient field K = C(a, b, v, n).

Question
@ Is (5) a good model for estimating parameters?

@ If not, do we find an equivalent, better, model?

S. Falkensteiner (MPI Leipzig) Rational parametrizations in DA June 12th, 2024



|dentifiable parameters (informal)

Consider the ODE system X (over C(c)) as in ( ). Assume that

x(0),x’(0),u(0) — y(0) (maybe even x”(0),...,u’(0),...,y’(0),...) are
known.
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|dentifiable parameters (informal)

Consider the ODE system X (over C(c)) as in ( ). Assume that
x(0),x’(0),u(0) — y(0) (maybe even x”(0),...,u’(0),...,y’(0),...) are
known.
o If ¢; is uniquely given from the resulting equations, then ¢; is called a
(globally) identifiable parameter.
@ If ¢; can have infinitely many values, it is called non-identifiable.
@ Otherwise, ¢; is called locally identifiable and can obtain finitely many
values given by a polynomial function.

June 12th, 2024
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Identifiable functions

The smallest field C € K € C(c) such that s N C(c)[y®), u(>®)] is
generated as an ideal by /5 NK[y(®), u(>)] is called the field of

identifiable functions of ¥. h € C(c) is called identifiable if h € K and
locally identifiable if h € K.
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Identifiable functions

The smallest field C € K € C(c) such that s N C(c)[y®), u(>®)] is
generated as an ideal by /5 NK[y(®), u(>)] is called the field of
identifiable functions of ¥. h € C(c) is called identifiable if h € K and
locally identifiable if h € K.

Rule of thumb

The identifiable functions are the rational expressions generated by the
coefficients of the 10-equations.
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Identifiable functions

The smallest field C € K € C(c) such that s N C(c)[y®), u(>®)] is
generated as an ideal by /5 NK[y(®), u(>)] is called the field of
identifiable functions of ¥. h € C(c) is called identifiable if h € K and
locally identifiable if h € K.

Rule of thumb

The identifiable functions are the rational expressions generated by the
coefficients of the 10-equations.

The identifiable parameters are that which are identifiable functions
themselves.
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SEIR model

The corresponding 10-equations are

nyiyy” + (—nyj + yi(byr + n(a+v)))yy’ — n(a+ v)y;> + byf(a+ v)y; + abvy;,
Yo—n

with K= C(n, b, h1 := a+ v, hy := av) as the field of identifiable
functions.

S. Falkensteiner (MPI Leipzig)

Rational parametrizations in DA

June 12th, 2024



Reparametrization

Given an ODE-system ¥ with the 10-equations S and the field of
identifiable functions C(h(c)), we seek for another realization ¥y of S over
C(h). Thus, h can then be used as a new set of parameters that are
identifiable and X replaces ¥ as model.
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SEIR model

The parametrization corresponding to ¥ is

_ — 2 2
P — (I, vE — al, bvSI am/En nv-E+a nl7
bn2SE—b?vS12—2abnvSI—bnv2Sl+a2n?vE+an v E4n?3 E—a3n?l n)
n2 9 .
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SEIR model

The parametrization corresponding to ¥ is

2 2
P — (I, vE — al, bl/Sl—am/E;nV E+a nl7

bn2SE—b?vS12—2abnvSI—bnv2Sl+a2n?vE+an v E4n?3 E—a3n?l n)
n2 9 .

a is a root of the polynomial
X% — (a+v)X + av €= X% — i X + hK[X].
We substitute
S=zp+tazn,E=zn0+azni,l=z0+az;

into P, expand, and set the coefficients of a to zero. The resulting variety
(called witness variety) is given by

W :=V(z10,231,230 + 220) U V(220,22,1,23,0,23,1)-
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SEIR model

W has the birational parametrization
¢ = (0) 21, —23,22, 23, O)
Then the resulting change of variables

S= azi,
E = —Z3 + azp,
I = z,
leads to the equivalent system (over C(n, b, hy = a + v, hy = av))

Z]/_(t) — b21 t)/(t)

N

é(t) I(t n bZl(t))

Yo=<1'(t)=avz(t )n— (a+v)I(t) = hazo(t) — hl(t),
n(t) = 1(z),
ya(t) = n.
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Tsen's theorem

Question
@ s it always possible to find X in identifiable parameters h(c)?
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Tsen's theorem

Question
@ s it always possible to find X in identifiable parameters h(c)?
@ What if ¢; is non-identifiable?
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Tsen's theorem

Question
@ s it always possible to find X in identifiable parameters h(c)?

@ What if ¢; is non-identifiable? Answer: Substitute the parameter ¢;
with a “good” value.
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Tsen's theorem

Question
@ s it always possible to find X in identifiable parameters h(c)?
@ What if ¢; is non-identifiable? Answer: Substitute the parameter ¢;
with a “good” value.
© What if ¢; is locally identifiable (as in SEIR)?

June 12th, 2024
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Tsen's theorem

Question
@ s it always possible to find X in identifiable parameters h(c)?

@ What if ¢; is non-identifiable? Answer: Substitute the parameter ¢;
with a “good” value.

© What if ¢; is locally identifiable (as in SEIR)?

Consider K = C(c) and F € K]y].

Tsen's theorem

If V(F) is rational (over K), then there is a rational parametrization over
K.
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Tsen's theorem

Question
@ s it always possible to find X in identifiable parameters h(c)?

@ What if ¢; is non-identifiable? Answer: Substitute the parameter ¢;
with a “good” value.

© What if ¢; is locally identifiable (as in SEIR)?

Consider K = C(c) and F € K]y].

Tsen's theorem

If V(F) is rational (over K), then there is a rational parametrization over
K.

Consequently, if there is just one parameter ¢ in a given ODE system X,
then there is an equivalent realization ¥ in an identifiable parameter h(c).
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Example 4

Let F = azyg +yf — ai.
2
P (5 B 2% € QUan Vo)

is a rational parametrization of V(F). By elementary reasoning it can be
shown that V(F) cannot be parametrized over Q(a1, a2).
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Example 4

has for ¢c; = a1, cp = a3 the corresponding parametrization P. The
|O-equation

F=ays+yi—c
has the identifiable functions h; = c12, hy = c22. Since there is no rational
parametrization of V(F) with coefficients in C(hy, hp), there is no
realization equivalent to ¥ with just identifiable parameters.
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Witness variety

Assume that the ODE system ¥ = {x’ = f(u,x),y = g(u, x) with
corresponding rational parametrization P has a coefficient field that is
algebraic over C(h) of degree n, where h are the identifiable functions.
Substitute each x; by

-1
Xi =2zj0+ zj1o+ -+ zjmo1a”

where z; ; are new variables and « is the primitive element of the algebraic
field extension. Write

m—1 m—1
_ Hj(z) Hnj(z)
P = ; 52 o/,...,jzo 5(2) o

Define the witness variety W (associated to P and «) as the Zariski
closure of V({H; j(z)}1<i<ni<j<m—1) \ V(6(2)).

S. Falkensteiner (MPI Leipzig) Rational parametrizations in DA June 12th, 2024



Identifiable functions

Assume that W has a component of dimension dim(V(S)) with a

birational parametrization (sp,...,s,—1) € C(h)(z)". Then we can use the
reparametrization

s=s0(z) +- - +55-1(2) -t

to obtain the realization

o= {Z/ = j(s)il ’ f(uas)7
y= g(u,s).

S. Falkensteiner (MPI Leipzig)
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Identifiable functions

Assume that W has a component of dimension dim(V(S)) with a

birational parametrization (sp,...,s,—1) € C(h)(z)". Then we can use the
reparametrization

s=s0(z) +- - +55-1(2) -t

to obtain the realization

o= {Z/ = j(s)il ’ f(uas)7
y= g(u,s).

@ In the case of dim(V(S)) = 1, the existence of such a birational
parametrization is equivalent to W having a component that is a
hypercircle parametrizable over C(c).

@ If P and the reparametrization are assumed to be polynomial, then W
has to have a component that is a line (over C(c)).
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